Season, but not experimental warming, affects the activity and temperature sensitivity of extracellular enzymes

2016 ◽  
Vol 131 (3) ◽  
pp. 255-265 ◽  
Author(s):  
Megan B. Machmuller ◽  
Jacqueline E. Mohan ◽  
Jeffrey M. Minucci ◽  
Carly A. Phillips ◽  
Nina Wurzburger
2018 ◽  
Vol 141 (1) ◽  
pp. 63-73 ◽  
Author(s):  
Megan B. Machmuller ◽  
Ford Ballantyne ◽  
Daniel Markewitz ◽  
Aaron Thompson ◽  
Nina Wurzburger ◽  
...  

2021 ◽  
Author(s):  
Adetunji Alex Adekanmbi ◽  
Laurence Dale ◽  
Liz Shaw ◽  
Tom Sizmur

<p>Predicting the pattern of soil organic matter (SOM) decomposition as a feedback to climate change, via release of CO<sub>2</sub>, is extremely complex and has received much attention. However, investigations often do not differentiate between the extracellular and intracellular processes involved and work is needed to identify their relative temperature sensitivities. Samples were collected from a grassland soil at Sonning, UK with average daily maximum and minimum soil temperature of 15 °C and 5 °C. We measured potential activities of β-glucosidase (BG) and chitinase (NAG) (extracellular enzymes) and glucose-induced CO<sub>2 </sub>respiration (intracellular enzymes) at a range of assay temperatures (5 °C, 15 °C, 26 °C, 37<sup>  </sup>°C, and 45 °C). The temperature coefficient Q<sub>10</sub> (the increase in enzyme activity that occurs after a 10 °C increase in soil temperature) was calculated to assess the temperature sensitivity of intracellular and extracellular enzymes activities. Between 5 °C and 15 °C intracellular and extracellular enzyme activities had equal temperature sensitivity, but between 15 °C and 26°C intracellular enzyme activity was more temperature sensitive than extracellular enzyme activity and between 26 °C and 37 °C extracellular enzyme activity was more temperature sensitive than intracellular enzyme activity. This result implies that extracellular depolymerisation of higher molecular weight organic compounds is more sensitive to temperature changes at higher temperatures (e.g. changes to daily maximum summer temperature) but the intracellular respiration of the generated monomers is more sensitive to temperature changes at moderate temperatures (e.g. changes to daily mean summer temperature). We therefore conclude that the extracellular and intracellular steps of SOM mineralisation are not equally sensitive to changes in soil temperature. The finding is important because we have observed greater increases in average daily minimum temperatures than average daily mean or maximum temperatures due to increased cloud cover and sulphate aerosol emission. Accounting for this asymmetrical global warming may reduce the importance of extracellular depolymerisation and increase the importance of intracellular catalytic activities as the rate limiting step of SOM decomposition.</p>


Geoderma ◽  
2020 ◽  
Vol 374 ◽  
pp. 114426
Author(s):  
J.Y. Wang ◽  
C.J. Ren ◽  
X.X. Feng ◽  
L. Zhang ◽  
R. Doughty ◽  
...  

2016 ◽  
Vol 113 (48) ◽  
pp. 13797-13802 ◽  
Author(s):  
Joanna C. Carey ◽  
Jianwu Tang ◽  
Pamela H. Templer ◽  
Kevin D. Kroeger ◽  
Thomas W. Crowther ◽  
...  

The respiratory release of carbon dioxide (CO2) from soil is a major yet poorly understood flux in the global carbon cycle. Climatic warming is hypothesized to increase rates of soil respiration, potentially fueling further increases in global temperatures. However, despite considerable scientific attention in recent decades, the overall response of soil respiration to anticipated climatic warming remains unclear. We synthesize the largest global dataset to date of soil respiration, moisture, and temperature measurements, totaling >3,800 observations representing 27 temperature manipulation studies, spanning nine biomes and over 2 decades of warming. Our analysis reveals no significant differences in the temperature sensitivity of soil respiration between control and warmed plots in all biomes, with the exception of deserts and boreal forests. Thus, our data provide limited evidence of acclimation of soil respiration to experimental warming in several major biome types, contrary to the results from multiple single-site studies. Moreover, across all nondesert biomes, respiration rates with and without experimental warming follow a Gaussian response, increasing with soil temperature up to a threshold of ∼25 °C, above which respiration rates decrease with further increases in temperature. This consistent decrease in temperature sensitivity at higher temperatures demonstrates that rising global temperatures may result in regionally variable responses in soil respiration, with colder climates being considerably more responsive to increased ambient temperatures compared with warmer regions. Our analysis adds a unique cross-biome perspective on the temperature response of soil respiration, information critical to improving our mechanistic understanding of how soil carbon dynamics change with climatic warming.


Ecology ◽  
2008 ◽  
Vol 89 (9) ◽  
pp. 2384-2391 ◽  
Author(s):  
Richard T. Conant ◽  
J. Megan Steinweg ◽  
Michelle L. Haddix ◽  
Eldor A. Paul ◽  
Alain F. Plante ◽  
...  

2021 ◽  
Author(s):  
Ji Chen

<p>Soil extracellular enzymes (EEs) catalyze rate-limiting steps in soil carbon (C) decomposition, which may have important implications for soil C cycling. Hydrolytic and oxidative EEs are targeting the decomposition of different soil C pools with distinct microbial C use efficiency. Here, we analyzed the responses of hydrolytic and oxidative EEAs to experimental warming, enhanced N deposition and altered precipitation. Experimental warming profoundly increased oxidative EEAs by 21%, while having no effect on hydrolytic EEAs. Enhanced N addition significantly decreased oxidative EEAs by 21% but enhanced hydrolytic EEAs by 15%. Increased precipitation substantially stimulated oxidative EEAs by 21%, while having no effect on hydrolytic EEAs. On the contrary, decreased precipitation significantly suppressed oxidative EEAs by 11% but enhanced hydrolytic EEAs by 26%. Those results together showed that hydrolytic and oxidative EEAs generally responded asymmetrically to the experimental treatments, representing the trade-offs between microbial hydrolytic and oxidative EEs production. Moreover, experimental treatments were more likely to have positive effects on soil C stock when oxidative EEAs respond negatively, and vice versa. One explanation might be that degradation of soil C pools that targeted by oxidative EEs were typical with lower microbial C use efficiency, since additional energy was required for the deconstruction of those complex and recalcitrant soil C pools. Altogether, our results highlight that soil EEAs can potentially be harnessed towards soil C sequestration if we can better understand the underlying mechanisms associated with the trade-offs between hydrolytic and oxidative EEAs.</p>


2018 ◽  
Vol 125 ◽  
pp. 244-250 ◽  
Author(s):  
J. Megan Steinweg ◽  
Joel E. Kostka ◽  
Paul J. Hanson ◽  
Christopher W. Schadt

Sign in / Sign up

Export Citation Format

Share Document