Estimate of shear wave velocity, and its time-lapse change, from seismic data recorded at the SMNH01 station of KiK-net using seismic interferometry

2012 ◽  
Vol 39 ◽  
pp. 128-137 ◽  
Author(s):  
Andrés Pech ◽  
Francisco J. Sánchez-Sesma ◽  
Roel Snieder ◽  
Filiberto Ignacio-Caballero ◽  
Alejandro Rodríguez-Castellanos ◽  
...  
First Break ◽  
2017 ◽  
Vol 35 (8) ◽  
Author(s):  
Atsushi Suzaki ◽  
Shohei Minato ◽  
Ranajit Ghose ◽  
Chisato Konishi ◽  
Naoki Sakai

2021 ◽  
Author(s):  
Ranajit Ghose

<p>Shear waves are uniquely informative because of their vector nature – with both polarization and propagation of shear waves being useful sources of information, their sensitivity to <em>in-situ</em> stress and grain-to-grain contact, and also because of the low velocity of shear waves in relatively soft formations - offering short wavelength and hence high resolution. Decimetre-scale resolution found in shear-wave reflection data in soft soil has resulted in new application possibilities. Medium anisotropy extracted from multi-component shear-wave data has provided information on natural symmetries in small-strain rigidity and/or stress in the shallow subsurface, which are caused by factors that are of great interest to the engineers. AVO response of shear waves at near-surface soil-layer boundaries has also proven to be useful for extracting local information in the subsoil.</p><p>In the present research we have looked at the sensitivity of shear-wave velocity and the underlying physics in both saturated and unsaturated near-surface soils, and if these can practically be used for monitoring soil dynamics and soil stability. Time-lapse changes in shear-wave velocity could be used to monitor changes in <em>in-situ</em> stress in the saturated sands. More recently, we have developed methodologies to invert time-lapse shear-wave velocity information together with geo-electrical information to obtain<em> in-situ</em> values of water saturation and suction in different partially saturated soil units. Incorporation of this information in a spatially varying sense is imperative in order to make assessment of stability of unsaturated soil slopes subjected to rainfall, modelling flooding and sediment flows due to increased surface runoff and erosion, sustainable agriculture through in-situ water moisture monitoring, and modelling pollutant transport through soils.</p>


2018 ◽  
Vol 34 ◽  
pp. 01002 ◽  
Author(s):  
Nur Jihan Syamimi Jafri ◽  
Mohd Asri Ab Rahim ◽  
Mohd Zulham Affandi Mohd Zahid ◽  
Nor Faizah Bawadi ◽  
Muhammad Munsif Ahmad ◽  
...  

Soil compaction plays an important role in every construction activities to reduce risks of any damage. Traditionally, methods of assessing compaction include field tests and invasive penetration tests for compacted areas have great limitations, which caused time-consuming in evaluating large areas. Thus, this study proposed the possibility of using non-invasive surface wave method like Multi-channel Analysis of Surface Wave (MASW) as a useful tool for assessing soil compaction. The aim of this study was to determine the shear wave velocity profiles and field density of compacted soils under varying compaction efforts by using MASW method. Pre and post compaction of MASW survey were conducted at Pauh Campus, UniMAP after applying rolling compaction with variation of passes (2, 6 and 10). Each seismic data was recorded by GEODE seismograph. Sand replacement test was conducted for each survey line to obtain the field density data. All seismic data were processed using SeisImager/SW software. The results show the shear wave velocity profiles increase with the number of passes from 0 to 6 passes, but decrease after 10 passes. This method could attract the interest of geotechnical community, as it can be an alternative tool to the standard test for assessing of soil compaction in the field operation.


Solid Earth ◽  
2019 ◽  
Vol 10 (2) ◽  
pp. 379-390 ◽  
Author(s):  
Yaniv Darvasi ◽  
Amotz Agnon

Abstract. Instrumental strong motion data are not common around the Dead Sea region. Therefore, calibrating a new attenuation equation is a considerable challenge. However, the Holy Land has a remarkable historical archive, attesting to numerous regional and local earthquakes. Combining the historical record with new seismic measurements will improve the regional equation. On 11 July 1927, a rupture, in the crust in proximity to the northern Dead Sea, generated a moderate 6.2 ML earthquake. Up to 500 people were killed, and extensive destruction was recorded, even as far as 150 km from the focus. We consider local near-surface properties, in particular, the shear-wave velocity, as an amplification factor. Where the shear-wave velocity is low, the seismic intensity far from the focus would likely be greater than expected from a standard attenuation curve. In this work, we used the multichannel analysis of surface waves (MASW) method to estimate seismic wave velocity at anomalous sites in Israel in order to calibrate a new attenuation equation for the Dead Sea region. Our new attenuation equation contains a term which quantifies only lithological effects, while factors such as building quality, foundation depth, topography, earthquake directivity, type of fault, etc. remain out of our scope. Nonetheless, about 60 % of the measured anomalous sites fit expectations; therefore, this new ground-motion prediction equation (GMPE) is statistically better than the old ones. From our local point of view, this is the first time that integration of the 1927 historical data and modern shear-wave velocity profile measurements improved the attenuation equation (sometimes referred to as the attenuation relation) for the Dead Sea region. In the wider context, regions of low-to-moderate seismicity should use macroseismic earthquake data, together with modern measurements, in order to better estimate the peak ground acceleration or the seismic intensities to be caused by future earthquakes. This integration will conceivably lead to a better mitigation of damage from future earthquakes and should improve maps of seismic hazard.


Sign in / Sign up

Export Citation Format

Share Document