attenuation curve
Recently Published Documents


TOTAL DOCUMENTS

62
(FIVE YEARS 15)

H-INDEX

9
(FIVE YEARS 3)

2022 ◽  
Vol 2022 ◽  
pp. 1-8
Author(s):  
Jinping Li ◽  
Sheng Zhao ◽  
Zaisheng Ling ◽  
Daqing Li ◽  
Guangsheng Jia ◽  
...  

Background. This study aims to evaluate the application of dual-energy computed tomography (DECT) for multiparameter quantitative measurement in early-stage hepatocellular carcinoma (HCC). Methods. The study retrospectively enrolled 30 patients with early-stage HCC and 43 patients with early-stage HCC who received radiofrequency ablation (RFA) and underwent abdomen enhanced CT scans in GSI mode. The GSI viewer was used for image display and data analysis. The regions of interest (ROIs) were delineated in the arterial phase and the venous phase. The optimal single energy value, CT values on different energy levels (40 keV, 70 keV, 100 keV, and 140 keV), the optimal energy level, the slope of the spectral attenuation curve, the effective atomic number (Zeff), iodine concentration (IC), water concentration (WC), normalized iodine concentration (NIC), and normalized water concentration (NWC) are measured and quantitatively analyzed. Results. The CT values of early-stage HCC at different single energy levels in dual phases were significantly different, and the single energy values were negatively correlated with the CT values. In the arterial phase and the venous phase, the optimal energy values for the best contrast-to-noise ratio were (68.34 ± 3.20) keV and (70.14 ± 2.01) keV, respectively. The slope of the spectral attenuation curve showed a downward trend at 40 keV, 70 keV, 100 keV, and 140 keV, but there was no statistically significant difference P > 0.05 . Zeff was positively correlated with IC and standardized IC, but has no significant correlation with WC and NWC in dual phases. Conclusion. DECT imaging contains multiparameter information and has different application values for early-stage HCC, and it is necessary to select the parameters reasonably for personalized and comprehensive evaluation.


Author(s):  
Tara Fetherolf ◽  
Naveen A Reddy ◽  
Alice E Shapley ◽  
Mariska Kriek ◽  
Brian Siana ◽  
...  

Abstract We perform an aperture-matched analysis of dust-corrected Hα and UV SFRs using 303 star-forming galaxies with spectroscopic redshifts 1.36 < zspec < 2.66 from the MOSFIRE Deep Evolution Field (MOSDEF) survey. By combining Hα and Hβ emission line measurements with multi-waveband resolved CANDELS/3D-HST imaging, we directly compare dust-corrected Hα and UV SFRs, inferred assuming a fixed attenuation curve shape and constant SFHs, within the spectroscopic aperture. Previous studies have found that Hα and UV SFRs inferred with these assumptions generally agree for typical star-forming galaxies, but become increasingly discrepant for galaxies with higher SFRs (≳100 M⊙ yr−1), with Hα-to-UV SFR ratios being larger for these galaxies. Our analysis shows that this trend persists even after carefully accounting for the apertures over which Hα and UV-based SFRs (and the nebular and stellar continuum reddening) are derived. Furthermore, our results imply that Hα SFRs may be higher in the centers of large galaxies (i.e. where there is coverage by the spectroscopic aperture) compared to their outskirts, which could be indicative of inside-out galaxy growth. Overall, we suggest that the persistent difference between nebular and stellar continuum reddening and high Hα-to-UV SFR ratios at the centers of large galaxies may be indicative of a patchier distribution of dust in galaxies with high SFRs.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Ziyu Wang ◽  
Xianzhang Ling ◽  
Lina Wang ◽  
Yingying Zhao

To investigate environmental vibration in the case of railway subgrade in seasonally frozen regions, field experiments were conducted on the Beijing–Harbin railway subgrade of China in autumn and winter. Vibration acceleration and vibration level attenuation law were analysed based on monitoring results. Accordingly, the influence of the subgrade freeze-thaw states, vehicle load, train formation, and running speed on the subgrade surface environmental vibration was analysed. The vibration response of the subgrade decreased with an increase in the distance from the track. The attenuation curve of the vibration acceleration can be fitted using the negative exponential function, and the attenuation curve of the vibration level can be fitted using the linear function. Additionally, the subgrade vibration response during the frozen period was greater than that during the unfrozen period owing to increased strength and rigidity and decreased damping ratio after subgrade freezing, which increased the vibration response. Moreover, the vibration intensity of the subgrade increased with increase in the vehicle load and formation and decreased with an increase in the driving speed within a particular speed range. The findings of this study provide an objective basis for railway subgrade design and disaster assessment in cold regions of China.


Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 249
Author(s):  
Vernon Cooray ◽  
Marcos Rubinstein ◽  
Farhad Rachidi

In return strokes, the parameters that can be measured are the channel base current and the return stroke speed. For this reason, many return stroke models have been developed with these two parameters, among others, as inputs. Here, we concentrate on the current propagation type engineering return stroke models where the return stroke is represented by a current pulse propagating upwards along the leader channel. In the current propagation type return stroke models, in addition to the channel base current and the return stroke speed, the way in which the return stroke current attenuates along the return stroke channel is specified as an input parameter. The goal of this paper is to show that, within the confines of current propagation type models, once the channel base current and the return stroke speed are known, the measured radiation field can be used to evaluate how the return stroke current attenuates along the channel. After giving the mathematics necessary for this inverse transformation, the procedure is illustrated by extracting the current attenuation curve from the typical wave shape of the return stroke current and from the distant radiation field of subsequent return strokes. The derived attenuation curve is used to evaluate both the subsequent and first return stroke electromagnetic fields at different distances. It is shown that all the experimentally observed features can be reproduced by the derived attenuation curve, except for the subsidiary peak and long zero-crossing times. In order to obtain electromagnetic fields of subsequent return strokes that are in agreement with measurements, one has to incorporate the current dispersion into the model. In the case of first return strokes, both current dispersion and reduction in return stroke speed with height are needed to obtain the desired features.


2020 ◽  
Vol 12 (1) ◽  
pp. 1533-1540
Author(s):  
Si Yuanlei ◽  
Li Maofei ◽  
Liu Yaoning ◽  
Guo Weihong

AbstractTransient electromagnetic method (TEM) is often used in urban underground space exploration and field geological resource detection. Inversion is the most important step in data interpretation. Because of the volume effect of the TEM, the inversion results are usually multi-solvable. To reduce the multi-solvability of inversion, the constrained inversion of TEM has been studied using the least squares method. The inversion trials were performed using two three-layer theoretical geological models and one four-layer theoretical geological model. The results show that one-dimensional least squares constrained inversion is faster and more effective than unconstrained inversion. The induced electromotive force attenuation curves of the inversion model indicate that the same attenuation curve may be used for different geological conditions. Therefore, constrained inversion using known geological information can more accurately reflect the underground geological information.


2020 ◽  
Vol 643 ◽  
pp. A4 ◽  
Author(s):  
Y. Fudamoto ◽  
P. A. Oesch ◽  
A. Faisst ◽  
M. Béthermin ◽  
M. Ginolfi ◽  
...  

We present dust attenuation properties of spectroscopically confirmed star forming galaxies on the main sequence at a redshift of ∼4.4 − 5.8. Our analyses are based on the far infrared continuum observations of 118 galaxies at rest-frame 158 μm obtained with the Atacama Large Millimeter Array (ALMA) Large Program to INvestigate [CII] at Early times (ALPINE). We study the connection between the ultraviolet (UV) spectral slope (β), stellar mass (M⋆), and infrared excess (IRX = LIR/LUV). Twenty-three galaxies are individually detected in the continuum at > 3.5σ significance. We perform a stacking analysis using both detections and nondetections to study the average dust attenuation properties at z ∼ 4.4 − 5.8. The individual detections and stacks show that the IRX–β relation at z ∼ 5 is consistent with a steeper dust attenuation curve than typically found at lower redshifts (z <  4). The attenuation curve is similar to or even steeper than that of the extinction curve of the Small Magellanic Cloud. This systematic change of the IRX–β relation as a function of redshift suggests an evolution of dust attenuation properties at z >  4. Similarly, we find that our galaxies have lower IRX values, up to 1 dex on average, at a fixed mass compared to previously studied IRX–M⋆ relations at z ≲ 4, albeit with significant scatter. This implies a lower obscured fraction of star formation than at lower redshifts. Our results suggest that dust properties of UV-selected star forming galaxies at z ≳ 4 are characterised by (i) a steeper attenuation curve than at z ≲ 4, and (ii) a rapidly decreasing dust obscured fraction of star formation as a function of redshift. Nevertheless, even among this UV-selected sample, massive galaxies (log M⋆/M⊙ >  10) at z ∼ 5 − 6 already exhibit an obscured fraction of star formation of ∼45%, indicating a rapid build-up of dust during the epoch of reionization.


2020 ◽  
Vol 902 (2) ◽  
pp. 123
Author(s):  
Naveen A. Reddy ◽  
Alice E. Shapley ◽  
Mariska Kriek ◽  
Charles C. Steidel ◽  
Irene Shivaei ◽  
...  

2020 ◽  
Vol 899 (2) ◽  
pp. 117 ◽  
Author(s):  
Irene Shivaei ◽  
Naveen Reddy ◽  
George Rieke ◽  
Alice Shapley ◽  
Mariska Kriek ◽  
...  

2020 ◽  
Vol 893 (2) ◽  
pp. 94
Author(s):  
Berzaf Berhane Teklu ◽  
Zesen Lin ◽  
Xu Kong ◽  
Enci Wang ◽  
Yulong Gao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document