Probability density evolution analysis of a shear-wall structure under stochastic ground motions by shaking table test

2019 ◽  
Vol 122 ◽  
pp. 53-66 ◽  
Author(s):  
Zixin Liu ◽  
Zhangjun Liu ◽  
Yazhou Xu
2017 ◽  
Vol 865 ◽  
pp. 306-312
Author(s):  
Zheng Li ◽  
Heng Zhou ◽  
Li Qin

A reduced-scale model of 7-story reinforced concrete shear wall structure is made. Shaking-table test of the model is carried out. Two test conditions are considered. In the first condition, fixed base is used. In another condition, soil structure interaction is considered. According to the experimental results, the dynamic characteristic and seismic performance of shear wall structure is studied. The acceleration time history response of model structure is obtained. Based on the time-history response, the dynamic characteristics of model structure are studied by spectrum analysis. The Finite Element Model of actural structure is established by ANSYS. The dynamic characteristics and seismic performance of actural structure are studied. By comparing the experiment results and numerical analysis results under the fixed-base condition, the rationality of the ANSYS model and numerical analysis method of are verified.


2010 ◽  
Vol 163-167 ◽  
pp. 2653-2656
Author(s):  
Li Sun ◽  
Hai Xia Zhang ◽  
De Zhi Liang ◽  
Zhe Li

In this paper, FBG sensors are used to monitor and analyze the response of reinforced concrete frame-shear wall model in shaking table test in order to study the placement of sensors and the protection of the transmission lines. Based on the experiment data, the destructive mode and dynamic characteristics in earthquake are obtained through (by) analyzing the dynamic response of the structures. The experiment results show that using FBG is effective in monitoring the structures.


Sign in / Sign up

Export Citation Format

Share Document