Shaking Table Test Study of Reinforced Concrete Shear Wall Structure

2017 ◽  
Vol 865 ◽  
pp. 306-312
Author(s):  
Zheng Li ◽  
Heng Zhou ◽  
Li Qin

A reduced-scale model of 7-story reinforced concrete shear wall structure is made. Shaking-table test of the model is carried out. Two test conditions are considered. In the first condition, fixed base is used. In another condition, soil structure interaction is considered. According to the experimental results, the dynamic characteristic and seismic performance of shear wall structure is studied. The acceleration time history response of model structure is obtained. Based on the time-history response, the dynamic characteristics of model structure are studied by spectrum analysis. The Finite Element Model of actural structure is established by ANSYS. The dynamic characteristics and seismic performance of actural structure are studied. By comparing the experiment results and numerical analysis results under the fixed-base condition, the rationality of the ANSYS model and numerical analysis method of are verified.

2013 ◽  
Vol 438-439 ◽  
pp. 1481-1484
Author(s):  
Yu Yang He ◽  
Quan Yuan

In this paper, the shaking table test of a 1/6 scale multi-rib composite wall supported on frame was conducted. The test structure has undergone elastic stage and cracking up the whole process of destruction, the dynamic characteristics of the structure in the various stages of change and the dynamic response were recorded. The shaking table test was in two steps, the first step for modal testing, modal test results such as period and damping; the second step was the seismic test to measure the dynamic characteristics of the test structure, acceleration response and displacement reaction to study the bottom frame ribbed composite wall structure under strong earthquake laws of failure and collapse failure criterion.


2010 ◽  
Vol 163-167 ◽  
pp. 2653-2656
Author(s):  
Li Sun ◽  
Hai Xia Zhang ◽  
De Zhi Liang ◽  
Zhe Li

In this paper, FBG sensors are used to monitor and analyze the response of reinforced concrete frame-shear wall model in shaking table test in order to study the placement of sensors and the protection of the transmission lines. Based on the experiment data, the destructive mode and dynamic characteristics in earthquake are obtained through (by) analyzing the dynamic response of the structures. The experiment results show that using FBG is effective in monitoring the structures.


2021 ◽  
Vol 11 (4) ◽  
pp. 1875
Author(s):  
Yong Jin ◽  
Hoyeon Kim ◽  
Daehyeon Kim ◽  
Yonghee Lee ◽  
Haksung Kim

In order to verify the reliability of numerical analysis, a series of 1 g shaking table tests for flat ground and slope were conducted using a laminar shear box subjected to different seismic waves. Firstly, numerical analyses, using the DEEPSOIL and ABAQUS software, were done to compare the results of flat ground experiments. After that, finite element analyses with ABAQUS were conducted to compare the results of slope experiments. For numerical analyses, considering the influence of the boundary, the concept of adjusted elastic modulus was proposed to improve the simulation results. Based on the analyses, it is found that in terms of acceleration-time history and spectral acceleration, the numerical analysis results are in good agreement with the experiment results. This implies that numerical analysis can capture the dynamic behavior of soil under 1 g shaking table test conditions.


2018 ◽  
Vol 10 (9) ◽  
pp. 3188 ◽  
Author(s):  
Jihong Ye ◽  
Liqiang Jiang

To develop the cold-formed steel (CFS) building from low-rise to mid-rise, this paper proposes a new type of CFS composite shear wall building system. The continuous placed CFS concrete-filled tube (CFRST) column is used as the end stud, and the CFS-ALC wall casing concrete composite floor is used as the floor system. In order to predict the seismic behavior of this new structural system, a simplified analytical model is proposed in this paper, which includes the following. (1) A build-up section with “new material” is used to model the CFS tube and infilled concrete of CFRST columns; the section parameters are determined by the equivalent stiffness principle, and the “new material” is modeled by an elastic-perfect plastic model. (2) Two crossed nonlinear springs with hysteretic parameters are used to model a composite CFS shear wall; the Pinching04 material is used to input the hysteretic parameters for these springs, and two crossed rigid trusses are used to model the CFS beams. (3) A linear spring is used to model the uplift behavior of a hold-down connection, and the contribution of these connections for CFRST columns are considered and individually modeled. (4) The rigid diaphragm is used to model the composite floor system, and it is demonstrated by example analyses. Finally, a shaking table test is conducted on a five-story 1:2-scaled CFS composite shear wall building to valid the simplified model. The results are as follows. The errors on peak drift of the first story, the energy dissipation of the first story, the peak drift of the roof story, and the energy dissipation of the whole structure’s displacement time–history curves between the test and simplified models are about 10%, and the largest one of these errors is 20.8%. Both the time–history drift curves and cumulative energy curves obtained from the simplified model accurately track the deformation and energy dissipation processes of the test model. Such comparisons demonstrate the accuracy and applicability of the simplified model, and the proposed simplified model would provide the basis for the theoretical analysis and seismic design of CFS composite shear wall systems.


2013 ◽  
Vol 405-408 ◽  
pp. 795-798
Author(s):  
Wen Long Lu ◽  
Chao Yong Shen

A new kind of RC frame-shear wall structures with partial columns sliding at upper ends is proposed in this paper. A shaking table test of this new kind of structure model (Model B) and a conventional frame shear-wall structure Model (Model A) were carried out, and the plan layout and the member size of the two models are nearly identical. The two models are 3-story and 2-bay by 2-bay, and the second story of either structure is weak story. The test results showed that: (1) under the same intense earthquake, the damage of Model B is slighter than that of Model A; and (2) under the same intense earthquake, the interstory drift angle, the acceleration and the shear force of weak story of Model B are reduced remarkably in comparison to Model A.


2015 ◽  
Vol 9 (1) ◽  
pp. 861-866 ◽  
Author(s):  
Wang Yaohong ◽  
Wu Dingyan ◽  
Cao Wanlin

In this paper, two low-rise shear wall specimens are tested on the shaking table, one is shear wall with CFST frame and embedded steel-plate, the other one is no concrete outside the steel-plate in comparison of the first one. The reduced scale of the two specimens is 1/12. The seismic wave “Taft” is input in the shaking table test. Based on the experiment, the author conducts the time history analysis (including elastic stage and plastic stage) of the specimens. The calculated results and measured results are compared.


2011 ◽  
Vol 94-96 ◽  
pp. 1031-1035 ◽  
Author(s):  
Xiu Ling Li

The experiment system of a three-floor reinforced concrete frame-shear wall eccentric structure has been built based on Matlab/Simulink software environment and hardware/software resources of dSPACE. And then a shaking table test for the hosting structure with and without magnetorheological (MR) dampers is implemented subjected to three different ground motions. The FBG strain sensors were used in this experiment for strains measurement of the columns and monitoring of the appearing and developing of cracks under different stages. The experimental results show that the control strategies of MR dampers have significant effect on axial force of the column.


Sign in / Sign up

Export Citation Format

Share Document