Deformation behavior of anisotropically overconsolidated clay under one-way cyclic loading

2020 ◽  
Vol 129 ◽  
pp. 105943
Author(s):  
Zhizhen Xu ◽  
Linyou Pan ◽  
Chuan Gu ◽  
Jun Wang ◽  
Yuanqiang Cai
2021 ◽  
pp. 1013-1021
Author(s):  
Kaifu Liu ◽  
Yonghao Cai ◽  
Yi Hu ◽  
Dazhi Wu ◽  
Zhenying Zhang

Author(s):  
Masaki Mitsuya ◽  
Hiroshi Yatabe

Buried pipelines may be deformed due to earthquakes and also corrode despite corrosion control measures such as protective coatings and cathodic protection. In such cases, it is necessary to ensure the integrity of the corroded pipelines against earthquakes. This study developed a method to evaluate the earthquake resistance of corroded pipelines subjected to seismic ground motions. Axial cyclic loading experiments were carried out on line pipes subjected to seismic motion to clarify the cyclic deformation behavior until buckling occurs. The test pipes were machined so that each one would have a different degree of local metal loss. As the cyclic loading progressed, displacement shifted to the compression side due to the formation of a bulge. The pipe buckled after several cycles. To evaluate the earthquake resistance of different pipelines, with varying degrees of local metal loss, a finite-element analysis method was developed that simulates the cyclic deformation behavior. A combination of kinematic and isotropic hardening components was used to model the material properties. These components were obtained from small specimen tests that consisted of a monotonic tensile test and a low cycle fatigue test under a specific strain amplitude. This method enabled the successful prediction of the cyclic deformation behavior, including the number of cycles required for the buckling of pipes with varying degrees of metal loss. In addition, the effect of each dimension (depth, longitudinal length and circumferential width) of local metal loss on the cyclic buckling was studied. Furthermore, the kinematic hardening component was investigated for the different materials by the low cycle fatigue tests. The kinematic hardening components could be regarded as the same for all the materials when using this component as the material property for the finite-element analyses simulating the cyclic deformation behavior. This indicates that the cyclic deformation behavior of various line pipes can be evaluated only based on their respective tensile properties and common kinematic hardening component.


2004 ◽  
Vol 7 ◽  
pp. 713-721
Author(s):  
Takashi OKAYASU ◽  
Koichi HASHIGUCHI ◽  
Toshiyuki OZAKI ◽  
Daiki YAJIMA ◽  
Shingo OZAKI ◽  
...  

2004 ◽  
Vol 126 (4) ◽  
pp. 339-352 ◽  
Author(s):  
C. L. Xie ◽  
S. Ghosh ◽  
M. Groeber

High strength low alloy (HSLA) steels, used in a wide variety of applications as structural components are subjected to cyclic loading during their service lives. Understanding the cyclic deformation behavior of HSLA steels is of importance, since it affects the fatigue life of components. This paper combines experiments with finite element based simulations to develop a crystal plasticity model for prediction of the cyclic deformation behavior of HSLA-50 steels. The experiments involve orientation imaging microscopy (OIM) for microstructural characterization and mechanical testing under uniaxial and stress–strain controlled cyclic loading. The computational models incorporate crystallographic orientation distributions from the OIM data. The crystal plasticity model for bcc materials uses a thermally activated energy theory for plastic flow, self and latent hardening, kinematic hardening, as well as yield point phenomena. Material parameters are calibrated from experiments using a genetic algorithm based minimization process. The computational model is validated with experiments on stress and strain controlled cyclic loading. The effect of grain orientation distributions and overall loading conditions on the evolution of microstructural stresses and strains are investigated.


Sign in / Sign up

Export Citation Format

Share Document