scholarly journals Elastoplastic finite element analysis on deformation behavior of ground surrounding anchor subjected to cyclic loading

2004 ◽  
Vol 7 ◽  
pp. 713-721
Author(s):  
Takashi OKAYASU ◽  
Koichi HASHIGUCHI ◽  
Toshiyuki OZAKI ◽  
Daiki YAJIMA ◽  
Shingo OZAKI ◽  
...  
2021 ◽  
Vol 11 (13) ◽  
pp. 6094
Author(s):  
Hubdar Hussain ◽  
Xiangyu Gao ◽  
Anqi Shi

In this study, detailed finite element analysis was conducted to examine the seismic performance of square and circular hollow steel braces under axial cyclic loading. Finite element models of braces were constructed using ABAQUS finite element analysis (FEA) software and validated with experimental results from previous papers to expand the specimen’s matrix. The influences of cross-section shape, slenderness ratio, and width/diameter-to-thickness ratio on hysteretic behavior and compressive-tensile strength degradation were studied. Simulation results of parametric studies show that both square and circular hollow braces have a better cyclic performance with smaller slenderness and width/diameter-to-thickness ratios, and their compressive-tensile resistances ratio significantly decreases from cycle to cycle after the occurrence of the global buckling of braces.


2019 ◽  
Vol 211 ◽  
pp. 229-235 ◽  
Author(s):  
Jiejie Li ◽  
Chenyao Tian ◽  
Binbin Lu ◽  
Yuehui Xian ◽  
Runni Wu ◽  
...  

Author(s):  
S. S. SATHEESH KUMAR ◽  
I. BALASUNDAR ◽  
T. RAGHU

Constrained groove pressing (CGP) is an attractive severe plastic deformation technique capable of processing ultrafine grained/nanostructured sheet materials. The deformation behavior of pure aluminum during constrained groove pressing is investigated by carrying out a two-dimensional finite element analysis (FEA). FEA predicted deformation behavior observed during each stages of pressing indicated almost negligible deformation in flat regions, whereas the inclined shear regions revealed diverse deformation characteristics. The plastic strain distributions unveiled inhomogeneous strain distribution at the end of one pass. Detailed examination of plastic strain evolution during CGP along various sections divulged superior strain distribution along middle surfaces when compared to top and bottom surfaces. The degree of strain homogeneity is evaluated quantitatively along different regions of the sheet and is correlated to the deformation characteristics. Load–stroke characteristics obtained during corrugating and flattening of sheets exhibited three stages and two stages behavior, respectively. The results obtained from the analysis are experimentally validated by processing pure aluminum sheets by CGP and the measured deformation homogeneity is benchmarked with FEA results.


Sign in / Sign up

Export Citation Format

Share Document