trip steels
Recently Published Documents


TOTAL DOCUMENTS

449
(FIVE YEARS 56)

H-INDEX

45
(FIVE YEARS 4)

2021 ◽  
pp. 111656
Author(s):  
Tongliang Wang ◽  
Lihe Qian ◽  
Wenlu Yu ◽  
Kaifang Li ◽  
Fucheng Zhang ◽  
...  

Author(s):  
Maria-Ioanna T. Tzini ◽  
John S. Aristeidakis ◽  
Peter I. Christodoulou ◽  
Alexis T. Kermanidis ◽  
Gregory N. Haidemenopoulos ◽  
...  

2021 ◽  
Vol 8 ◽  
Author(s):  
Nghiem NguyenVan ◽  
Kengo Kato ◽  
Hideki Ono

Medium Manganese Transformation Induced Plastic (Mn-TRIP) steels are expected to be a new generation of advanced high strength sheet steels due to their excellent balance between material cost and mechanical properties. During the solidification process, AlN precipitates at the grain boundary, which leads to the serious deterioration of hot ductility. However, the precipitation of AlN in Mn-TRIP steel has not been clear. In this study, the chemical compositions, morphology, size distribution, and the precipitation behavior of AlN inclusion in an Fe-0.5Al-2.0Mn alloy were studied under the continuous unidirectional solidification process. The results show that there are two types of nitride inclusions in the Fe-0.5Al-2.0Mn alloy: AlN inclusion and complex inclusion of Al2O3-AlN. The planar sections of most AlN particles are hexagonal. Based on the thermodynamic calculation, it was found that the content of Al has a large effect on the stability of Al2O3 and AlN. When the content of Al increases, the molten iron can be changed from saturated by Al2O3 to saturated by AlN. During the solidification process, the precipitation of Al2O3 inclusions occurred at the beginning of the solidification process. The precipitation of AlN inclusions occurred when the contents of Al and N exceeded the equilibrium value and grew until the end of the solidification. The precipitation conditions of AlN inclusion in the Fe-0.5Al-2.0Mn alloy during the solidification process were discussed. The precipitation and the amount of precipitate of AlN inclusions depend on the initial contents of Al, N, and O. It was found that the precipitation of AlN inclusions can be controlled by reducing the initial content of N to less than 0.0072 mass%.


Author(s):  
Rishabh Sharma ◽  
Camille M. Poulin ◽  
Marko Knezevic ◽  
Michael P. Miles ◽  
David T. Fullwood

Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4132
Author(s):  
Marton Benke ◽  
Adrienn Hlavacs ◽  
Ferenc Kristaly ◽  
Mate Sepsi ◽  
Valeria Mertinger

The volume fraction of austenite (γ), ε martensite and α′ martensite is of key importance in the research of TWIP/TRIP steels. When mechanical loading is involved, the crystallographic texture also develops, which complicates X-ray diffraction-based phase ratio determination. The problem is more pronounced when only a couple, or only one Bragg-reflection can be measured. A solution for such cases is to determine the ratio of the phases based on the pole distribution function of a selected Bragg-reflection of the present phases. In this manuscript, this method is reconsidered for and applied to non-transmittable bulk specimens for the first time in the reflection mode of XRD pole figure measurements. First, the method was applied to a series of γ–α′ powder mixtures. The results were compared to those obtained by the Rietveld method. Afterwards, the technique was applied to strongly textured, bulk TWIP/TRIP steel specimens which were tensile tested at different temperatures. It was shown that the results of the presented method were close to those of the Rietveld technique in the case of powder mixtures. The results of the tensile-tested steels revealed that the α′ content increases with decreasing test temperatures, and the variation of the α′ ratio correlates very well with the ultimate tensile strength versus the temperature, confirming the contribution of the α′ content to the strength of TWIP/TRIP steels.


Metals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 523
Author(s):  
Baoyu Xu ◽  
Peng Chen ◽  
Zhengxian Li ◽  
Di Wu ◽  
Guodong Wang ◽  
...  

The δ-TRIP steel has attracted a lot of attention for its potential application in automotive components, owing to the low density, good combination of strength, and ductility. As the difficulty in yield strength further increasement is caused by large fraction ferrite, the work hardening ability was enhanced by optimizing the manganese (Mn)-content in this study. Three δ-TRIP steels with different manganese (Mn)-content were designed to explore the significant effect of Mn content on the work hardening behavior in order to develop high strength steel suitable for the industrial continuous annealing process. The detailed effect of Mn on microstructure evolution and deformation behavior was studied by scanning electron microscope (SEM), interrupted tensile tests, X-ray diffraction (XRD), and in-situ electron backscattered diffraction (EBSD). The study suggested that 2 Mn steel has the lowest degree of bainitic transformation, as a result of fine grain size of prior austenite. The large TRIP effect and dislocation strengthening improve the work hardening rate, resulting in 2 Mn steel exhibiting comparable mechanical properties with the QP980 steels. The retained austenite in 1.5 Mn steel progressively transformed into martensite and sustained the strain to a high strain value of 0.40, showing a good strength-ductility balance.


Sign in / Sign up

Export Citation Format

Share Document