cyclic deformation
Recently Published Documents


TOTAL DOCUMENTS

1409
(FIVE YEARS 172)

H-INDEX

58
(FIVE YEARS 6)

2022 ◽  
Vol 210 ◽  
pp. 114459
Author(s):  
Mao-Yuan Luo ◽  
Tu-Ngoc Lam ◽  
Pei-Te Wang ◽  
Nien-Ti Tsou ◽  
Yao-Jen Chang ◽  
...  

Metals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 47
Author(s):  
Žilvinas Bazaras ◽  
Vaidas Lukoševičius

Resistance to cyclic loading is a key property of the material that determines the operational reliability of the structures. When selecting a material for structures operating under low-cycle loading conditions, it is essential to know the cyclic deformation characteristics of the material. Low-cycle strain diagrams are very sensitive to variations in chemical composition, thermal processing technologies, surface hardening, loading conditions, and other factors of the material. The application of probability methods enables the increase in the life characteristics of the structures and the confirmation of the cycle load values at the design phase. Most research papers dealing with statistical descriptions of low-cycle strain properties do not look into the distribution of low-cycle diagram characteristics. The purpose of our paper is to provide a probability assessment of the low-cycle properties of materials extensively used in the automotive and aviation industries, taking into account the statistical assessment of the cyclic elastoplastic strain diagrams or of the parameters of the diagrams. Materials with contrasting cyclic properties were investigated in the paper. The findings of the research allow for a review of durability and life of the structural elements of service facilities subjected to elastoplastic loading by assessing the distribution of low-cycle strain parameters, as well as the allowed distribution limits.


2021 ◽  
Vol 12 ◽  
Author(s):  
Fernando Suárez-Sipmann ◽  
Jesús Villar ◽  
Carlos Ferrando ◽  
Juan A. Sánchez-Giralt ◽  
Gerardo Tusman

Mechanical ventilation (MV) is a lifesaving supportive intervention in the management of acute respiratory distress syndrome (ARDS), buying time while the primary precipitating cause is being corrected. However, MV can contribute to a worsening of the primary lung injury, known as ventilation-induced lung injury (VILI), which could have an important impact on outcome. The ARDS lung is characterized by diffuse and heterogeneous lung damage and is particularly prone to suffer the consequences of an excessive mechanical stress imposed by higher airway pressures and volumes during MV. Of major concern is cyclic overdistension, affecting those lung segments receiving a proportionally higher tidal volume in an overall reduced lung volume. Theoretically, healthier lung regions are submitted to a larger stress and cyclic deformation and thus at high risk for developing VILI. Clinicians have difficulties in detecting VILI, particularly cyclic overdistension at the bedside, since routine monitoring of gas exchange and lung mechanics are relatively insensitive to this mechanism of VILI. Expired CO2 kinetics integrates relevant pathophysiological information of high interest for monitoring. CO2 is produced by cell metabolism in large daily quantities. After diffusing to tissue capillaries, CO2 is transported first by the venous and then by pulmonary circulation to the lung. Thereafter diffusing from capillaries to lung alveoli, it is finally convectively transported by lung ventilation for its elimination to the atmosphere. Modern readily clinically available sensor technology integrates information related to pulmonary ventilation, perfusion, and gas exchange from the single analysis of expired CO2 kinetics measured at the airway opening. Current volumetric capnography (VCap), the representation of the volume of expired CO2 in one single breath, informs about pulmonary perfusion, end-expiratory lung volume, dead space, and pulmonary ventilation inhomogeneities, all intimately related to cyclic overdistension during MV. Additionally, the recently described capnodynamic method provides the possibility to continuously measure the end-expiratory lung volume and effective pulmonary blood flow. All this information is accessed non-invasively and breath-by-breath helping clinicians to personalize ventilatory settings at the bedside and minimize overdistension and cyclic deformation of lung tissue.


Polymers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3819
Author(s):  
Hamed Peidayesh ◽  
Katarína Mosnáčková ◽  
Zdenko Špitalský ◽  
Abolfazl Heydari ◽  
Alena Opálková Šišková ◽  
...  

Conductive polymer composites (CPC) from renewable resources exhibit many interesting characteristics due to their biodegradability and conductivity changes under mechanical, thermal, chemical, or electrical stress. This study is focused on investigating the physical properties of electroconductive thermoplastic starch (TPS)–based composites and changes in electroconductive paths during cyclic deformation. TPS–based composites filled with various carbon black (CB) contents were prepared through melt processing. The electrical conductivity and physicochemical properties of TPS–CB composites, including mechanical properties and rheological behavior, were evaluated. With increasing CB content, the tensile strength and Young’s modulus were found to increase substantially. We found a percolation threshold for the CB loading of approximately 5.5 wt% based on the rheology and electrical conductivity. To observe the changing structure of the conductive CB paths during cyclic deformation, both the electrical conductivity and mechanical properties were recorded in parallel using online measurements. Moreover, the instant electrical conductivity measured online during mechanical deformation of the materials was taken as the parameter indirectly describing the structure of the conductive CB network. The electrical conductivity was found to increase during five runs of repeated cyclic mechanical deformations to constant deformation below strain at break, indicating good recovery of conductive paths and their new formation.


2021 ◽  
Vol 31 (11) ◽  
pp. 3452-3468
Author(s):  
Kai-meng WANG ◽  
Hong-yang JING ◽  
Lian-yong XU ◽  
Lei ZHAO ◽  
Yong-dian HAN ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document