microscopic deformation
Recently Published Documents


TOTAL DOCUMENTS

153
(FIVE YEARS 26)

H-INDEX

19
(FIVE YEARS 3)

Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 294
Author(s):  
Jie Zhao ◽  
Kehuan Wang ◽  
Liangxing Lv ◽  
Liliang Wang ◽  
Denis J. Politis ◽  
...  

High-efficiency and low-cost hot forming technologies for titanium alloys have been developed for producing complex-shaped, thin-walled tubular components under non-superplastic forming conditions. Under these forming conditions, there exist complex and highly integrated material evolution processes including microscopic heterogeneous deformation, microstructure evolution and damage behaviour. This paper presents an integrated crystal plasticity finite element model of near-α titanium alloys during non-superplastic hot deformation conditions considering grain boundary sliding (GBS), dynamic recrystallisation (DRX), as well as void evolution. The polycrystalline model of a near-α TA15 titanium alloy was established, containing α phase, β phase and grain boundary (GB) regions, in which the GB region was a visualised representation of GBS. The quantitative strength ratio between the GB regions and α phase was calculated according to the Zener–Holloman parameter Z and grain size, which determined the microscopic deformation behaviour. There were found to be two high microscopic strain regions in the α phase: intragranular deformation bands through the most favourable slipping and near the GBs through multiple slipping, which promoted continuous and discontinuous DRX, respectively. With the decrease in parameter Z or grain size, the activated dislocations accommodating GBS were found to no longer pile up inside the grain, but instead travel across the grain interior. Finally, methods to improve the macroscopic plastic formability were proposed for the difficult-to-form titanium alloys experiencing non-superplastic hot deformation.


Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 224
Author(s):  
Lajos Daróczi ◽  
Tarek Yousif Elrasasi ◽  
Talaye Arjmandabasi ◽  
László Zoltán Tóth ◽  
Bence Veres ◽  
...  

In this study, acoustic emission (AE) measurements on polycrystalline tin as a function of temperature at different driving rates under compression were carried out. It is shown that there is a definite difference between the acoustic emission characteristics belonging to twinning (low temperatures) as well as to dislocation slip (high temperatures). The stress averaged values of the exponents of the energy probability density functions decreased from = 1.45 ± 0.05 (−60 °C) to = 1.20 ± 0.15 (50 °C) at a driving rate of , and the total acoustic energy decreased by three orders of magnitude with increasing temperature. In addition, the exponent γ in the scaling relation SAE~DAEγ (SAE is the area and DAEis the duration) also shows similar temperature dependence (changing from γ = 1.78 ± 0.08 to γ = 1.35 ± 0.05), illustrating that the avalanche statistics belong to two different microscopic deformation mechanisms. The power law scaling relations were also analyzed, taking into account that the detected signal is always the convolution of the source signal and the transfer function of the system. It was obtained that approximate values of the power exponents can be obtained from the parts of the above functions, belonging to large values of parameters. At short duration times, the attenuation effect of the AE detection system dominates the time dependence, from which the characteristic attenuation time, τa, was determined as τa≅ 70 μs.


2021 ◽  
pp. 109926
Author(s):  
Kavindu Wijesinghe ◽  
Janith Wanni ◽  
Natasha K Banerjee ◽  
Sean Banerjee ◽  
Ajit Achuthan

2021 ◽  
Vol 809 ◽  
pp. 140871
Author(s):  
Jing Li ◽  
Li Jin ◽  
Fenghua Wang ◽  
Shuai Dong ◽  
Jie Dong

Author(s):  
Kelin Wang

Abstract Integrating earthquake studies with geodynamics requires knowledge of different modes of permanent deformation of rocks beyond seismic failure. However, upon stepping out of the realm of brittle failure, students find themselves in a zone of terminology conflict. Rocks below the brittle shallow part of the lithosphere are said to be ductile, plastic, or viscous, yet in many papers what is obviously brittle deformation is said to be plastic. In this EduQuakes article, I explain the origin of this conflict and how to handle it. The primary reason for the conflict is that the word plastic is used by one research community to describe viscous deformation but by another community to describe permanent deformation that is not viscous. To the former community, emphasis is on microscopic deformation mechanisms. To the latter community, emphasis is on whether the macroscopic deformation is time dependent. Using a Coulomb continuum to approximate the effects of numerous brittle faults adds another level of complexity. It is futile to expect a unification of terminology any time soon, but with some basic knowledge one can live with this situation without suffering scientific confusion.


Sign in / Sign up

Export Citation Format

Share Document