Effect of frequency dependence of large mass ratio viscoelastic tuned mass damper on seismic performance of structures

2020 ◽  
Vol 130 ◽  
pp. 105998 ◽  
Author(s):  
Jun Dai ◽  
Zhao-Dong Xu ◽  
Pan-Pan Gai ◽  
Hong-Wei Li
2020 ◽  
Vol 29 (17) ◽  
Author(s):  
Ying‐jie Kang ◽  
Ling‐yun Peng ◽  
Peng Pan ◽  
Hai‐shen Wang ◽  
Gen‐qi Xiao

Tuned mass dampers (TMD) are one of the most reliable devices to control the vibration of the structure. The optimum mass ratio required for a single tuned mass damper (STMD) is evaluated corresponding to the fundamental natural frequency of the structure. The effect of STMD and Multiple tuned mass dampers (MTMD) on a G+20 storey structure are studied to demonstrate the damper’s effectiveness in seismic application. The location and number of tuned mass dampers are studied to give best structural performance in maximum reduction of seismic response for El Centro earthquake data. The analysis results from SAP 2000 software tool shows damper weighing 2.5% of the total weight of the structure effectively reduce the response of the structure. Study shows that introduction of 4-MTMD at top storey can effectively reduce the response by 10% more in comparison to single tuned mass damper. The use of MTMD of same mass ratio that of STMD is more effective in seismic response.


2019 ◽  
Vol 258 ◽  
pp. 05005 ◽  
Author(s):  
Wivia Octarena Nugroho ◽  
Dina Rubiana Widarda ◽  
Oryza Herdha Dwyana

As the need of the train speed increased, the existing bridges need to be evaluated, especially in dynamic responses, which are deformation and acceleration. In this study, Cisomang Bridge is modeled and analyzed due to the high-speed train SJ X2 in varying speeds, 50 km/h, 100 km/h, 150 km/h, and 200 km/h. The used of tuned mass damper also will be varied on its setting and placing. The tuned mass dampers setting be varied based on the first or second natural frequency and the placing of tuned mass damper be varied based on maximum deformation of the first or second mode. Moreover, the tuned mass damper ratio will be varied 1% and 1.6%. For all speed variations, dynamic responses of structure without TMD still fulfil the Indonesian Government Criterion based on PM 60 - 2012 but do not meet requirement of comfort criteria based on DIN-Fachbericht 101. Furthermore, only for the speed train 50km/h dynamic responses of structure fulfil safety criteria based on Eurocode EN 1990:2002, whereas the other speed variations do not meet that requirement. In the use of TMD 1% mass ratio, the structure fulfils the safety criteria for all speed variations. In the use of TMD 1.6% mass ratio, all the structure fulfils the safety and comfort criteria except 100 km/h speed which only fulfils the safety criteria.


2007 ◽  
Vol 3 (S245) ◽  
pp. 63-66 ◽  
Author(s):  
T. J. Cox ◽  
J. Younger ◽  
L. Hernquist ◽  
P. F. Hopkins

AbstractThe hierarchical formation of structure suggests that dark halos, and the galaxies they host, are shaped by their merging history. While the idea that mergers between galaxies of equal mass, i.e., major merger, produce elliptical galaxies has received considerable attention, he galaxies that result from minor merger, i.e., mergers between galaxies with a large mass ratio, is much less understood. We have performed a large number of numerical simulations of minor mergers, including cooling, star formation, and black hole growth in order to study this process in more detail. This talk will present some preliminary results of this study, and in particular, the morphology and kinematics of minor merger remnants.


1994 ◽  
Vol 422 ◽  
pp. 823 ◽  
Author(s):  
D. R. Gies ◽  
A. W. Fullerton ◽  
C. T. Bolton ◽  
W. G., Jr. Bagnuolo ◽  
M. E. Hahula ◽  
...  

2014 ◽  
Vol 610 ◽  
pp. 78-83
Author(s):  
Ji Gang Zhang ◽  
Zhi Wei Jiang

Offshore platform rocking wall system and tuned mass damper are briefly introduced, and the paper integrates the advantages of these two kinds of seismic method, and the TMD is attached to the jacket offshore platform - rocking wall system, using the ANSYS for finite element analysis, and the analysis results are optimized. The results show that compared with the offshore platform - rocking wall system, additional TMD can give full play to the performances of the two kinds of seismic methods, which is remarkable.


2016 ◽  
Vol 2016 (0) ◽  
pp. J0910301
Author(s):  
Shotaro ISHIHARA ◽  
Keiichi HIROAKI ◽  
Masahiro WATANABE

Sign in / Sign up

Export Citation Format

Share Document