Influence of stepped cylindrical turbulence generators on the thermal enhancement factor of a flat plate solar air heater

Solar Energy ◽  
2020 ◽  
Vol 198 ◽  
pp. 295-310 ◽  
Author(s):  
A. Leander Antony ◽  
Shreyas P. Shetty ◽  
N. Madhwesh ◽  
N. Yagnesh Sharma ◽  
K. Vasudeva Karanth
2019 ◽  
Vol 13 (3) ◽  
pp. 5562-5587 ◽  
Author(s):  
M. S. Manjunath ◽  
R. Venkatesh ◽  
N. Madhwesh

The aim of this study is to determine the effect of U-shaped rib turbulator on the flow and heat transfer characteristics of flat plate solar air heater using two dimensional CFD analysis. The analysis is carried out using the CFD software tool ANSYS Fluent for the flow Reynolds number ranging from 9000 to 21,000.The relative pitch(P/e) of the U-shaped rib is varied as 5, 10, 25 and 40 for a fixed relative rib height of 0.0421. It is shown that the U-shaped rib augments the Nusselt number by about 1.76 times while the friction factor increased by about 1.95 times with reference to smooth duct for a relative pitch of 10 and 5 respectively. The maximum thermal enhancement factor is obtained as 1.5 for the configuration of P/e=25. A comparative analysis of U-shaped rib with circular rib reveals that the U-shaped rib turbulator is found to be more effective in providing heat transfer enhancement and has about 15% higher thermal enhancement factor as compared to circular turbulator.


2020 ◽  
Vol 14 (3) ◽  
pp. 7282-7295
Author(s):  
R. Venkatesh ◽  
Nitesh Kumar ◽  
N. Madhwesh ◽  
Manjunath M.S.

This paper presents the effect of deflector ribs on the thermal performance of flat plate solar air heater using Computational Fluid Dynamics (CFD) methodology. The analysis is carried out using two-dimensional computational domain for the Reynolds number range of 6000-18000. RNG k-є turbulence model is used to capture the turbulence characteristics of the flow. The deflector rib has a cross-section of isosceles triangle and is placed transversely with respect to the flow. The distance between consecutive ribs is varied as 40mm, 80mm, 160mm and 320mm while the air gap height is varied as 2mm, 3mm, 5mm and 10mm. The numerical model is validated against the well-known correlation of Dittus-Boelter for smooth duct. The simulation results reveal that the presence of deflector ribs provide augmented heat transfer through flow acceleration and enhanced turbulence levels. With reference to smooth duct, the maximum achieved heat transfer improvement is about 1.39 times for the inter-rib distance of 40mm and an air gap height of 3mm while the maximum fiction factor achieved was about 3.82 times for pitch value of 40mm and air gap height of 3mm. The highest thermal enhancement factor is achieved for the pitch value of 320mm and an air gap height of 3mm at Re=6000. The air gap height value of 10mm exhibits thermal enhancement factor values lesser than 1.0 and hence is not recommended for use as heat transfer enhancement device for the entire Reynolds number range used in the analysis. The pitch value of 320 mm exhibits thermal enhancement factor greater than 1.0 for almost all the Reynolds number range used in the analysis and varies between 0.93 and 1.07.


Author(s):  
Dr. Dolfred Vijay Fernandes ◽  
Manjunath M.S.

Two-dimensional numerical analysis is conducted to determine the influence of upstream surface modifications of a novel clerestory shaped rib turbulator on thermal performance augmentation. The upstream surface of the rib is divided into two parts where the upper rib surface is always normal to the incoming flow and the lower rib surface, which is inclined to the flow. The elevation of the vertical surface is varied using non-dimensional approach length (h/e=0, 0.25, 0.5 and 0.75), and the inclination of the lower surface is varied using the rib angle (θ=15°, 45° and 90°). The relative roughness height and pitch of rib is fixed as 0.0421 and 12.5, respectively. RNG k-ϵ turbulence model is used in the analysis, and Reynolds number is varied from 8000-20000. The results reveal that the combined effect of flow impingement and the suppression of formation of recirculation zone leads to increased heat transfer. Lower values of non-dimensional approach length and rib angle provides a higher thermal enhancement factor. The highest increase in Nusselt number is found to be about 1.82 times that of the smooth duct at Re=8000 for h/e=0.25 and rib angle of 15°. The maximum thermal enhancement factor is found to have a range of 1.6-1.45 for an approach length of 0.25 and a rib angle of 15°.


2017 ◽  
Vol 138 ◽  
pp. 288-293
Author(s):  
Jarinee Jongpluempiti ◽  
Nattadon Pannucharoenwong ◽  
Chatchai Benjapiyaporn ◽  
Ponthep Vengsungnle

2013 ◽  
Vol 12 (11) ◽  
pp. 1003-1007 ◽  
Author(s):  
Muhammad Hanif ◽  
Masood Ur Rahman ◽  
Muhammad Amin ◽  
Mansoor Khan Khattak ◽  
Muhammad Ramzan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document