Thermal energy management optimization of solar thermal energy system based on small parabolic trough collectors for bitumen maintaining on heat process

Solar Energy ◽  
2020 ◽  
Vol 211 ◽  
pp. 1403-1421
Author(s):  
Mokhtar Ghazouani ◽  
Mohsine Bouya ◽  
Mohammed Benaissa ◽  
Kamal Anoune ◽  
Mohamed Ghazi
Author(s):  
Craig S. Turchi ◽  
Nicholas Langle ◽  
Robin Bedilion ◽  
Cara Libby

Concentrating Solar Power (CSP) systems utilize solar thermal energy for the generation of electric power. This attribute makes it relatively easy to integrate CSP systems with fossil-fired power plants. The “solar-augment” of fossil power plants offers a lower cost and lower risk alternative to stand-alone solar plant construction. This study ranked the potential to add solar thermal energy to coal-fired and natural gas combined cycle (NGCC) plants found throughout 16 states in the southeast and southwest United States. Each generating unit was ranked in six categories to create an overall score ranging from Excellent to Not Considered. Separate analysis was performed for parabolic trough and power tower technologies due to the difference in the steam temperatures that each can generate. The study found a potential for over 11 GWe of parabolic trough and over 21 GWe of power tower capacity. Power towers offer more capacity and higher quality integration due to the greater steam temperatures that can be achieved. The best sites were in the sunny southwest, but all states had at least one site that ranked Good for augmentation. Geographic depiction of the results can be accessed via NREL’s Solar Power Prospector at http://maps.nrel.gov/.


2021 ◽  
Vol 16 ◽  
pp. 1-9
Author(s):  
NORHUDA ABDUL MANAF ◽  
Muhammad Hussin Abdul Jabar ◽  
Muhammad Hussin Abdul Jabar ◽  
Nor Ruwaida Jamian

Phase change material (PCM) features an attractive option due to its solar thermal storage capability to assist the cooling/heating process especially during night operation, thus contributing to the reduction of energy cost and carbon footprint. This study aims to analyse the emergence of PCM in the application of solar thermal energy. Subsequently, to envisage Technology Readiness Level (TRL) and commercialisation opportunity based on historical and contemporary research trends. This review encompasses of peer-reviewed literatures from Scopus database for one decade between 2010 and 2019. Based on the review, there is a moderate growth on the research related to PCM-solar thermal at 22% of emergence rate from the past one decade. China has dominated in this research development by concurring approximately 22% from the number of research articles published globally. It can be concluded that the application of PCM in solar thermal energy system is at TRL 5 which reflects research and development (R&D) progress is at intermediate prototypical development based on the trend of academic publication. Furthermore, based on the review, PCM features great potential in commercialisation opportunity due to its vital contribution as a frontier material/substance in overcoming the challenges of energy and environmental insecurity.


2015 ◽  
Vol 813-814 ◽  
pp. 760-767 ◽  
Author(s):  
J. Selvaraj ◽  
Chandra C. Jawahar ◽  
Khushal A. Bhatija ◽  
Saalai Thenagan

The present scenario of energy conservation has witnessed many innovative and eco-friendly techniques and one such area where there is a necessity to conserve energy is foundries. Foundries also pollute the atmosphere with greenhouse gases contributing to 296143037.6 metric tons annually. The proposed technique in this paper aims at reducing the energy utilized in melting the scrap material at foundries by solar thermal energy. In the methodology proposed, solar energy is concentrated onto the scrap placed on a receiving platform using a parabolic trough and heats it up so that the heated scrap takes lesser energy to melt. The experiments resulted in preheating temperature of 100 °C when placed on a receiving platform and 110°C when copper shots are used to conduct heat from receiver to the scrap. This translates to energy conservation of 6%. This eco-friendly technique when adopted can result in substantial savings in consumption and environmental protection.


Sign in / Sign up

Export Citation Format

Share Document