Preheating Metal Scrap in Foundries Using Solar Thermal Energy

2015 ◽  
Vol 813-814 ◽  
pp. 760-767 ◽  
Author(s):  
J. Selvaraj ◽  
Chandra C. Jawahar ◽  
Khushal A. Bhatija ◽  
Saalai Thenagan

The present scenario of energy conservation has witnessed many innovative and eco-friendly techniques and one such area where there is a necessity to conserve energy is foundries. Foundries also pollute the atmosphere with greenhouse gases contributing to 296143037.6 metric tons annually. The proposed technique in this paper aims at reducing the energy utilized in melting the scrap material at foundries by solar thermal energy. In the methodology proposed, solar energy is concentrated onto the scrap placed on a receiving platform using a parabolic trough and heats it up so that the heated scrap takes lesser energy to melt. The experiments resulted in preheating temperature of 100 °C when placed on a receiving platform and 110°C when copper shots are used to conduct heat from receiver to the scrap. This translates to energy conservation of 6%. This eco-friendly technique when adopted can result in substantial savings in consumption and environmental protection.

2013 ◽  
Vol 24 (4) ◽  
pp. 51-62
Author(s):  
Shadreck M. Situmbeko ◽  
Freddie L. Inambao

Solar thermal energy (STE) technology refers to the conversion of solar energy to readily usable energy forms. The most important component of a STE technology is the collectors; these absorb the shorter wavelength solar energy (400-700nm) and convert it into usable, longer wavelength (about 10 times as long) heat energy. Depending on the quality (temperature and intensity) of the resulting thermal energy, further conversions to other energy forms such as electrical power may follow. Currently some high temperature STE technologies for electricity production have attained technical maturity; technologies such as parabolic dish (commercially available), parabolic trough and power tower are only hindered by unfavourable market factors including high maintenance and operating costs. Low temperature STEs have so far been restricted to water and space heating; however, owing to their lower running costs and almost maintenance free operation, although operating at lower efficiencies, may hold a key to future wider usage of solar energy. Low temperature STE conversion technology typically uses flat plate and low concentrating collectors such as parabolic troughs to harness solar energy for conversion to mechanical and/or electrical energy. These collector systems are relatively cheaper, simpler in construction and easier to operate due to the absence of complex solar tracking equipment. Low temperature STEs operate within temperatures ranges below 300oC. This research work is geared towards developing feasible low temperature STE conversion technology for electrical power generation. Preliminary small-scale concept plants have been designed at 500Wp and 10KWp. Mathematical models of the plant systems have been developed and simulated on the EES (Engineering Equation Solver) platform. Fourteen candidate working fluids and three cycle configurations have been analysed with the models. The analyses included a logic model selector through which an optimal conversion cycle configuration and working fluid mix was established. This was followed by detailed plant component modelling; the detailed component model for the solar field was completed and was based on 2-dimensional segmented thermal network, heat transfer and thermo fluid dynamics analyses. Input data such as solar insolation, ambient temperature and wind speed were obtained from the national meteorology databases. Detailed models of the other cycle components are to follow in next stage of the research. This paper presents findings of the system and solar field component.


2018 ◽  
Vol 3 (3) ◽  
Author(s):  
Muhammad Irvan ◽  
Dewi Sri Jayanti ◽  
Raida Agustina

Abstrak.  Pengering hybrid merupakan pengering yang menggunakan dua atau lebih sumber energi untuk proses penguapan air. Tujuan dari penelitian ini adalah memodifikasi alat pengering surya sederhana menjadi alat pengering hybrid dengan tambahan energi panas dari pembakaran tempurung kelapa untuk melakukan uji pengeringan pada kacang hijau. Distribusi suhu rata-rata pada alat pengering hybrid pengeringan kacang hijau menggunakan energi panas matahari, kombinasi dan biomassa masing-masing adalah 49oC,50oC dan 35oC dengan iradiasi matahari masing-masing menggunakan energi panas matahari dan kombinasi adalah 360,47W/m2 dan 362,79W/m2. Kelembaban relatif pada alat pengering hybrid saat pengeringan kacang hijau menggunakan energi panas matahari, kombinasi dan biomassa masing-masing adalah 44,69%, 45,69% dan 57,75%. Kecepatan udara pada alat pengering hybrid saat pengeringan kacang hijau menggunakan energi panas matahari, kombinasi dan biomassa masing-masing adalah 0,11 m/s , 0,1 m/s dan 0,08 m/s. Pengeringan kacang hijau menggunakan sumber panas dari energi matahari, sumber panas kombinasi energi matahari dengan pembakaran biomassa dan menggunakan energi pembakaran biomassa menghasilkan kadar air akhir biji kacang hijau masing-masing sebesar 8,42%, 8,27% dan 10,75%. Besarnya energi biomassa yang dihasilkan saat pengering selama 10 jam adalah 272,142 MJ. Besarnya energi matahari saat pengeringan kacang hijau menggunakan sumber energi matahari dan sumber panas kombinasi energi matahari dengan pembakaran biomassa adalah 3,22 MJ dan 3,14 MJ.Testing of Simple and Modified Solar Dryers Become a Hybrid Dryer ToolAbstract. A hybrid dryer is a dryer that uses two or more sources of energy for the evaporation process of water. The purpose of this study is to modify the simple solar drying tool into a hybrid drying tool with additional heat energy from coconut shell combustion to test drying on green beans. The average temperature distribution of green peanut drying dryers using solar thermal energy, combination and biomass are respectively 49oC, 50oC and 35oC with solar irradiation each using solar thermal energy and the combination is 360,47W/m2 and                362, 79   W/m2. The relative humidity in the hybrid drier when drying green beans using solar thermal energy, combination and biomass are 44.69%, 45.69% and 57.75%, respectively. The air velocity in the hybrid drier when drying green beans using solar thermal energy, combination and biomass are 0.11 m/s, 0.1 m/s and       0.08 m/s respectively. Drying of green beans using a source of heat from solar energy, a combination of solar energy sources with biomass combustion and using biomass combustion energy to produce the final content of green beans seeds by 8.42%, 8.27% and 10.75% respectively. The amount of biomass energy produced during drying for 10 hours is 272,142 MJ. The amount of solar energy during drying of green beans using solar energy sources and the combined heat source of solar energy with biomass burning is 3.22 MJ and 3.14 MJ.


Author(s):  
Craig S. Turchi ◽  
Nicholas Langle ◽  
Robin Bedilion ◽  
Cara Libby

Concentrating Solar Power (CSP) systems utilize solar thermal energy for the generation of electric power. This attribute makes it relatively easy to integrate CSP systems with fossil-fired power plants. The “solar-augment” of fossil power plants offers a lower cost and lower risk alternative to stand-alone solar plant construction. This study ranked the potential to add solar thermal energy to coal-fired and natural gas combined cycle (NGCC) plants found throughout 16 states in the southeast and southwest United States. Each generating unit was ranked in six categories to create an overall score ranging from Excellent to Not Considered. Separate analysis was performed for parabolic trough and power tower technologies due to the difference in the steam temperatures that each can generate. The study found a potential for over 11 GWe of parabolic trough and over 21 GWe of power tower capacity. Power towers offer more capacity and higher quality integration due to the greater steam temperatures that can be achieved. The best sites were in the sunny southwest, but all states had at least one site that ranked Good for augmentation. Geographic depiction of the results can be accessed via NREL’s Solar Power Prospector at http://maps.nrel.gov/.


Author(s):  
Anagha Pathak ◽  
Kiran Deshpande ◽  
Sandesh Jadkar

There is a huge potential to deploy solar thermal energy in process heat applications in industrial sectors. Around 50 % of industrial heat demand is less than 250 °C which can be addressed through solar energy. The heat energy requirement of industries like automobile, auto ancillary, metal processing, food and beverages, textile, chemical, pharmaceuticals, paper and pulp, hospitality, and educational institutes etc. can be partially met with solar hybridization based solutions. The automobile industry is one of the large consumers of fossil fuel energy in the world. The automobile industry is major economic growth driver of India and has its 60 % fuel dependence on electricity and remaining on oil based products. With abundant area available on roof top, and need for medium temperature operation makes this sector most suitable for substitution of fossil fuel with renewable solar energy. Auto sector has requirement of heat in the temperature range of 80-140 oC or steam up to 2 bar pressure for various processes like component washing, degreasing, drying, boiler feed water preheating, LPG vaporization and cooling. This paper discusses use of solar energy through seamless integration with existing heat source for a few processes involved in automobile industries. Integration of the concentrated solar thermal technology (CST) with the existing heating system is discussed with a case study for commonly used processes in auto industry such as component washing, degreasing and phosphating. The present study is undertaken in a leading automobile plant in India. Component cleaning, degreasing and phosphating are important processes which are carried out in multiple water tanks of varying temperatures. Temperatures of tanks are maintained by electrical heaters which consumes substantial amount of electricity. Non-imaging solar collectors, also known as compound parabolic concentrators (CPC) are used for generation of hot water at required process temperature. The CPC are non-tracking collectors which concentrate diffuse and beam radiation to generate hot water at required temperature. The solar heat generation plant consists of CPC collectors, circulation pump and water storage tank with controls. The heat gained by solar collectors is transferred through the storage tank to the process. An electric heater is switched on automatically when the desired temperature cannot be reached during lower radiation level or during non-sunny hours/days. This solar heating system is designed with CPC collectors that generate process heating water as high as 90OC. It also seamlessly integrates with the existing system without compromising on its reliability, while reducing electricity consumption drastically. The system is commissioned in April, 2013 and since then it has saved ~ 1,75,000 units of electricity/year and in turn 164 MT of emission of CO2 annually.


2016 ◽  
Vol 45 (21) ◽  
pp. 8740-8744 ◽  
Author(s):  
Anders Lennartson ◽  
Angelica Lundin ◽  
Karl Börjesson ◽  
Victor Gray ◽  
Kasper Moth-Poulsen

In a Molecular Solar–Thermal Energy Storage (MOST) system, solar energy is converted to chemical energy using a compound that undergoes reversible endothermic photoisomerization.


2021 ◽  
Vol 77 (3) ◽  
pp. 23-31
Author(s):  
Budhy Setiawan ◽  
Riska Nur Wakidah

In this research, a hybrid egg hatcher machine applied two types of energy for heating, namely solar thermal energy and an electric (fossil) heater. Solar energy was the main energy, and the electric heater was the secondary energy. This hybrid system was related to Indonesian geography, with high solar energy of an average of 5 kWh/m2/day in one year. Therefore, solar thermal energy storage will be effectively used in Indonesia to reduce fossil energy exploitation. The solar thermal energy was stored in an accumulator with a 4 m2 collector.  The solar thermal accumulator was an insulated vessel with high reflectivity and insulation.  The heat energy was stored and kept in some water bars. In maximizing absorption capability, the collector used a reflective array method that was operated by opening or closing the arrays. The arrays were controlled by an electronic controller, which compared the thermal energy inside with the energy of sunlight. The array’s movement to charge the accumulator was done automatically by using the hysteresis switching method. The electric heater will be used only if the accumulator temperature is less than 40 °C. The capacity of the egg hatcher machine accumulator was 300 eggs. Raw data were collected using a data logger of DAQ (Data Acquisition Interface) DT9813 to determine and analyze the performance of system parameters.  From the data collected, the solar thermal accumulator showed its capability for storing thermal energy up to 7.07 kWh. However, its average absorption efficiencies were 54–58 % by direct solar and 60–70 % by diffuse solar. Experiments verified the effectiveness of the designed accumulator. The experimental results showed that the electrical energy consumption was reduced up to 64 %.


2007 ◽  
Vol 129 (4) ◽  
pp. 378-381 ◽  
Author(s):  
Hongguang Jin ◽  
Jun Sui ◽  
Hui Hong ◽  
Zhifeng Wang ◽  
Danxing Zheng ◽  
...  

This paper manufactured an original middle-temperature solar receiver/reactor prototype, positioned along the focal line of one-axis parabolic trough concentrator, representing the development of a new kind of solar thermochemical technology. A 5kW prototype solar reactor at around 200–300°C, which is combined with a linear receiver, was originally manufactured. A basic principle of the design of the middle-temperature solar reactor is identified and described. A representative experiment of solar-driven methanol decomposition was carried out. Experimental tests were conducted from 200°C to 300°C under mean solar flux of 300–800W∕m2 and at a given methanol feeding rate of 2.1L∕h. The conversion of methanol decomposition yielded up to 50–95%, and the efficiency of solar thermal energy conversion to chemical energy reached 30–60%. The experimental results obtained here prove that the novel solar receiver/reactor prototype introduced in this paper can provide a promising approach to effectively utilize middle-temperature solar thermal energy by means of solar thermochemical processes.


Sign in / Sign up

Export Citation Format

Share Document