scholarly journals Molecular beam and pulsed laser deposition of ZnS:Cr for intermediate band solar cells

2015 ◽  
Vol 141 ◽  
pp. 322-330 ◽  
Author(s):  
Mohammadreza Nematollahi ◽  
Xiaodong Yang ◽  
Lars Martin Sandvik Aas ◽  
Zahra Ghadyani ◽  
Morten Kildemo ◽  
...  
2021 ◽  
Vol 6 (2) ◽  
pp. 2000856
Author(s):  
Yury Smirnov ◽  
Laura Schmengler ◽  
Riemer Kuik ◽  
Pierre‐Alexis Repecaud ◽  
Mehrdad Najafi ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 344
Author(s):  
Yasushi Shoji ◽  
Ryo Tamaki ◽  
Yoshitaka Okada

From the viewpoint of band engineering, the use of GaSb quantum nanostructures is expected to lead to highly efficient intermediate-band solar cells (IBSCs). In IBSCs, current generation via two-step optical excitations through the intermediate band is the key to the operating principle. This mechanism requires the formation of a strong quantum confinement structure. Therefore, we focused on the material system with GaSb quantum nanostructures embedded in AlGaAs layers. However, studies involving crystal growth of GaSb quantum nanostructures on AlGaAs layers have rarely been reported. In our work, we fabricated GaSb quantum dots (QDs) and quantum rings (QRs) on AlGaAs layers via molecular-beam epitaxy. Using the Stranski–Krastanov growth mode, we demonstrated that lens-shaped GaSb QDs can be fabricated on AlGaAs layers. In addition, atomic force microscopy measurements revealed that GaSb QDs could be changed to QRs under irradiation with an As molecular beam even when they were deposited onto AlGaAs layers. We also investigated the suitability of GaSb/AlGaAs QDSCs and QRSCs for use in IBSCs by evaluating the temperature characteristics of their external quantum efficiency. For the GaSb/AlGaAs material system, the QDSC was found to have slightly better two-step optical excitation temperature characteristics than the QRSC.


2015 ◽  
Vol 25 (27) ◽  
pp. 4321-4327 ◽  
Author(s):  
Sylvio Schubert ◽  
Florian Schmidt ◽  
Holger von Wenckstern ◽  
Marius Grundmann ◽  
Karl Leo ◽  
...  

Solar Energy ◽  
2012 ◽  
Vol 86 (11) ◽  
pp. 3146-3152 ◽  
Author(s):  
Feng-Hao Hsu ◽  
Na-Fu Wang ◽  
Yu-Zen Tsai ◽  
Mau-Phon Houng

1996 ◽  
Vol 441 ◽  
Author(s):  
M. E. Taylor ◽  
Harry A. Atwater ◽  
M. V. Ramana Murty

AbstractPulsed laser deposition of Si on dihydride-terminated (l×1) Si (001) at low temperatures yields epitaxial layers, unlike molecular beam epitaxy. Si films were grown by ultrahigh vacuum pulsed laser deposition on the dihydride surface at substrate temperatures from 40 °C to 350 ° C. Epitaxial thickness and interface roughness were measured by high-resolution cross-sectional transmission electron microscopy and found to be comparable to known data for Si films grown by molecular beam epitaxy on monohydride-terminated (2×l) Si (001). Si films were grown at 200 °C by pulsed laser deposition on the dihydride surface at argon background pressures between 10− torr and 10−1 torr. Ion probe time of flight data was collected over the same pressure range. Comparison of the results suggests that loss of epitaxy is correlated with low incident energy. This, in conjunction with information on surface reconstruction obtained from reflection high-energy electron diffraction, suggests that the mechanism enabling epitaxy on the dihydride surface is Si subplantation, a mechanism only possible in growth with an energetic beam.


Sign in / Sign up

Export Citation Format

Share Document