Remarks on a link between the Laplace transform and distribution function of a nonnegative random variable

2009 ◽  
Vol 79 (13) ◽  
pp. 1501-1508 ◽  
Author(s):  
Leonid Rozovsky
1992 ◽  
Vol 29 (03) ◽  
pp. 499-518 ◽  
Author(s):  
Ben Hambly

We consider an increasing supercritical branching process in a random environment and obtain bounds on the Laplace transform and distribution function of the limiting random variable. There are two possibilities that can be distinguished depending on the nature of the component distributions of the environment. If the minimum family size of each is 1, the growth will be as a power depending on a parameter α. If the minimum family sizes of some are greater than 1, it will be exponential, depending on a parameter γ. We obtain bounds on the distribution function analogous to those found for the simple Galton-Watson case. It is not possible to obtain exact estimates and we are only able to obtain bounds to within ε of the parameters.


2011 ◽  
Vol 48 (01) ◽  
pp. 217-237 ◽  
Author(s):  
Mark S. Veillette ◽  
Murad S. Taqqu

We present a method for computing the probability density function (PDF) and the cumulative distribution function (CDF) of a nonnegative infinitely divisible random variable X. Our method uses the Lévy-Khintchine representation of the Laplace transform Ee-λX = e-ϕ(λ), where ϕ is the Laplace exponent. We apply the Post-Widder method for Laplace transform inversion combined with a sequence convergence accelerator to obtain accurate results. We demonstrate this technique on several examples, including the stable distribution, mixtures thereof, and integrals with respect to nonnegative Lévy processes.


2011 ◽  
Vol 48 (1) ◽  
pp. 217-237 ◽  
Author(s):  
Mark S. Veillette ◽  
Murad S. Taqqu

We present a method for computing the probability density function (PDF) and the cumulative distribution function (CDF) of a nonnegative infinitely divisible random variable X. Our method uses the Lévy-Khintchine representation of the Laplace transform Ee-λX = e-ϕ(λ), where ϕ is the Laplace exponent. We apply the Post-Widder method for Laplace transform inversion combined with a sequence convergence accelerator to obtain accurate results. We demonstrate this technique on several examples, including the stable distribution, mixtures thereof, and integrals with respect to nonnegative Lévy processes.


1992 ◽  
Vol 29 (3) ◽  
pp. 499-518 ◽  
Author(s):  
Ben Hambly

We consider an increasing supercritical branching process in a random environment and obtain bounds on the Laplace transform and distribution function of the limiting random variable. There are two possibilities that can be distinguished depending on the nature of the component distributions of the environment. If the minimum family size of each is 1, the growth will be as a power depending on a parameter α. If the minimum family sizes of some are greater than 1, it will be exponential, depending on a parameter γ. We obtain bounds on the distribution function analogous to those found for the simple Galton-Watson case. It is not possible to obtain exact estimates and we are only able to obtain bounds to within ε of the parameters.


2021 ◽  
Vol 109 (123) ◽  
pp. 77-82
Author(s):  
Péter Kevei

We prove that h?(x) = ??x0 y??1F?(y)dy is regularly varying with index ? [0, ?) if and only if V?(x) = ?[0,x] y?dF(y) is regularly varying with the same index, where ? > 0, F(x) is a distribution function of a nonnegative random variable, and F?(x) = 1?F(x). This contains at ? = 0, ?= 1 a result of Rogozin [8] on relative stability, and at ? = 0, ? = 2 a new, equivalent characterization of the domain of attraction of the normal law. For ? = 0 and ? > 0 our result implies a recent conjecture by Seneta [9].


2014 ◽  
Vol 51 (04) ◽  
pp. 1081-1099 ◽  
Author(s):  
Gérard Letac ◽  
Mauro Piccioni

This paper provides tools for the study of the Dirichlet random walk inRd. We compute explicitly, for a number of cases, the distribution of the random variableWusing a form of Stieltjes transform ofWinstead of the Laplace transform, replacing the Bessel functions with hypergeometric functions. This enables us to simplify some existing results, in particular, some of the proofs by Le Caër (2010), (2011). We extend our results to the study of the limits of the Dirichlet random walk when the number of added terms goes to ∞, interpreting the results in terms of an integral by a Dirichlet process. We introduce the ideas of Dirichlet semigroups and Dirichlet infinite divisibility and characterize these infinite divisible distributions in the sense of Dirichlet when they are concentrated on the unit sphere ofRd.


2019 ◽  
Vol 56 (4) ◽  
pp. 1086-1105
Author(s):  
Ekaterina T. Kolkovska ◽  
Ehyter M. Martín-González

AbstractWe study the distribution of the negative Wiener–Hopf factor for a class of two-sided jump Lévy processes whose positive jumps have a rational Laplace transform. The positive Wiener–Hopf factor for this class of processes was studied by Lewis and Mordecki (2008). Here we obtain a formula for the Laplace transform of the negative Wiener–Hopf factor, as well as an explicit expression for its probability density in terms of sums of convolutions of known functions. Under additional regularity conditions on the Lévy measure of the studied processes, we also provide asymptotic results as $u\to-\infty$ for the distribution function F(u) of the negative Wiener–Hopf factor. We illustrate our results in some particular examples.


1998 ◽  
Vol 35 (01) ◽  
pp. 165-183
Author(s):  
Fabrice Guillemin ◽  
Didier Pinchon

We show in this paper how the Laplace transform θ* of the duration θ of an excursion by the occupation process {Λ t } of an M/M/∞ system above a given threshold can be obtained by means of continued fraction analysis. The representation of θ* by a continued fraction is established and the [m−1/m] Padé approximants are computed by means of well known orthogonal polynomials, namely associated Charlier polynomials. It turns out that the continued fraction considered is an S fraction and as a consequence the Stieltjes transform of some spectral measure. Then, using classic asymptotic expansion properties of hypergeometric functions, the representation of the Laplace transform θ* by means of Kummer's function is obtained. This allows us to recover an earlier result obtained via complex analysis and the use of the strong Markov property satisfied by the occupation process {Λ t }. The continued fraction representation enables us to further characterize the distribution of the random variable θ.


1987 ◽  
Vol 1 (4) ◽  
pp. 405-416 ◽  
Author(s):  
Laurence A. Baxter ◽  
Eui Yong Lee

A model for a system whose state changes continuously with time is introduced. It is assumed that the system is modeled by Brownian motion with negative drift and an absorbing barrier at the origin. A repairman arrives according to a Poisson process and increases the state of the system by a random amount if the state is below a threshold α. Explicit expressions are deduced for the distribution function of X(t), the state of the system at time 1, if X(t) ≤ α and for the Laplace transform of the density of X( t). The stationary case is examined in detail.


2005 ◽  
Vol 6 (2) ◽  
pp. 13
Author(s):  
Bambang Avip Priatna Martadiputra

Let T be a nonnegative random variable representing the lifetimes of individuals in some population. Let f(t) denote the probability density function of T and F(t) denote the distribution function of T, the hazard function of T defined as  F(t) - 1  S(t)   whereS(t) f(t) h(t)   If equation (1) integrated we have cumulative hazard function H (t).  This paper describes application of kernel method for estimation of hazard function h (.) based censoring data. And then we will show that the hazard estimator is unbiased asymptotically, consistent, and normal asymptotically. Key word: kernel methods, estimation hazard function.


Sign in / Sign up

Export Citation Format

Share Document