scholarly journals On a conjecture of Seneta on regular variation of truncated moments

2021 ◽  
Vol 109 (123) ◽  
pp. 77-82
Author(s):  
Péter Kevei

We prove that h?(x) = ??x0 y??1F?(y)dy is regularly varying with index ? [0, ?) if and only if V?(x) = ?[0,x] y?dF(y) is regularly varying with the same index, where ? > 0, F(x) is a distribution function of a nonnegative random variable, and F?(x) = 1?F(x). This contains at ? = 0, ?= 1 a result of Rogozin [8] on relative stability, and at ? = 0, ? = 2 a new, equivalent characterization of the domain of attraction of the normal law. For ? = 0 and ? > 0 our result implies a recent conjecture by Seneta [9].

1969 ◽  
Vol 6 (02) ◽  
pp. 409-418 ◽  
Author(s):  
Eugene Lukacs

Let X(t) be a stochastic process whose parameter t runs over a finite or infinite n terval T. Let t 1 , t 2 ɛ T, t 1 〈 t2; the random variable X(t 2) – X(t 1) is called the increment of the process X(t) over the interval [t 1, t 2]. A process X(t) is said to be homogeneous if the distribution function of the increment X(t + τ) — X(t) depends only on the length τ of the interval but is independent of the endpoint t. Two intervals are said to be non-overlapping if they have no interior point in common. A process X(t) is called a process with independent increments if the increments over non-overlapping intervals are stochastically independent. A process X(t) is said to be continuous at the point t if plimτ→0 [X(t + τ) — X(t)] = 0, that is if for any ε > 0, limτ→0 P(| X(t + τ) — X(t) | > ε) = 0. A process is continuous in an interval [A, B] if it is continuous in every point of [A, B].


1972 ◽  
Vol 9 (3) ◽  
pp. 572-579 ◽  
Author(s):  
D. J. Emery

It is shown that, under certain conditions, satisfied by stable distributions, symmetric distributions, distributions with zero mean and finite second moment and other distributions, the distribution function of the maxima of successive partial sums of identically distributed random variables has an asymptotic property. This property implies the regular variation of the tail of the distribution of the hitting times of the associated random walk, and hence that these hitting times belong to the domain of attraction of a stable law.


2020 ◽  
pp. 168-173
Author(s):  
Аалиева Бурул

Аннотация: Бөлүштүрүү функциясын, үзгүлтүксүз кокус чоңдуктардын ыктымалдуулуктарын бѳлүштүрүүнүн жиктелиш функциясы (ыктымалдуулуктун тыгыздыгы), ыктымалдуулуктарды бир калыпта бѳлуштүрүү законун аныктоо. Бөлүштүрүү функциясынын касиеттерин окутуу, далилдөө. X кокус чоңдугунун кабыл алууга мүмкүн болгон маанилери (a,b) интервалында жаткандыгынын ыктымалдуулугу бөлүштүрүү функциясынын өсүндүсүнө барабар. Түйүндүү сѳздѳр: Бөлүштурүү функциясы, үзгүлтүксүз кокус чоңдуктардын ыктымалдуулуктары, дискреттик кокус чоңдук, бөлүштүрүүнүн интегралдык функциясы, баштапкы функция. Аннотация: Определять вид непрерывной случайной величины, находить вероятность попадания случайной величины в заданный интервал по заданной функции распределения, уметь находить плотность распределения и равномерное распределения. Еще одно отличие характеристики случайных величин непрерывного действия-включение функции классификации распределения вероятностей, обнаружение первого производного функции последовательности. Следовательно, характеристика распределения вероятностей дискретных случайных величин. Свойства функции распределения обучения и доказательства. Х может быть, чтобы принять параметры диапазона значений (а, б), что функция распределения вероятностей равна приращению. Ключевые слова: Функция распределения, вероятность непрерывной случайной величины, дискретная случайная величина, интегральная функция распределения, первообразная. Annotation: Determine the type of random variable, find the probability of a random variable falling into a given interval by a given distribution function, be able to find the distribution density and uniform distribution. Properties of learning distribution function and evidence. X maybe to take the parameters of the range of values (a, b), that the probability distribution function is equal to the increment. Another difference in the characterization of continuous random variables is the inclusion of the classification function of the probability distribution, the detection of the first derivative of the sequence function. Hence, the characteristic of the probability distribution of discrete random variables Non-decreasing functions, ∫ _ (- ∞) ^ ∞▒ 〖P (x) ax = 1〗. In the case of an individual, if the values of a random variable (a, b) are located within ∫_a ^ b▒ 〖P (x) ax = 1〗 Keywords: Distribution function, probability of continuous random variable, discrete random variable, integral distribution function, antiderivative. DOI: 10.35254/bhu.2019.50.1 ВЕСТНИК БИШКЕКСКОГО ГОСУДАРСТВЕННОГО УНИВЕРСИТЕТА. No4(50) 2019 169 Аннотация: Бөлүштүрүү функциясын, үзгүлтүксүз кокус чоңдуктардын ыктымалдуулуктарын бѳлүштүрүүнүн жиктелиш функциясы (ыктымалдуулуктун тыгыздыгы), ыктымалдуулуктарды бир калыпта бѳлуштүрүү законун аныктоо. Бөлүштүрүү функциясынын касиеттерин окутуу, далилдөө. X кокус чоңдугунун кабыл алууга мүмкүн болгон маанилери (a,b) интервалында жаткандыгынын ыктымалдуулугу бөлүштүрүү функциясынын өсүндүсүнө барабар. X кокус чондугу PP(xx < xx1) ыктымалдуулукта x ден кичине маанилерди кабыл алат; X кокус чондугу xx1 ≤ xx < xx2барабарсыздыктын ыктымалдуулугу PP(xx1 ≤ xx < xx2) түрүндө канааттандырат. Үзгүлтүксүз кокус чоңдуктарды мүнөздөөнүн дагы бир башкача жолу ыктымалдуулукту бөлүштүрүүнүн жиктелиш функциясын киргизүү, тутамдык функциясынын биринчи туундусун табуу. Демек,тутамдык функция жиктелиш функциясынын баштапкы функциясы болорун, дискреттик кокус чондуктардын ыктымалдуулуктарынын бөлүштүрүүсүн мунөздөө. Жиктелиш функциясы кемибөөчү функция, ∫ ff(xx)dddd = 1 ∞ −∞ . Жекече учурда, эгерде кокус чоңдуктардын мүмкүн болгон маанилери (a,b) аралыгында жайгашса, анда � ff(xx)dddd = 1 bb aa Түйүндүү сѳздѳр: Бөлүштурүү функциясы, үзгүлтүксүз кокус чоңдуктардын ыктымалдуулуктары, дискреттик кокус чоңдук, бөлүштүрүүнүн интегралдык функциясы, баштапкы функция. Аннотация: Определять вид непрерывной случайной величины, находить вероятность попадания случайной величины в заданный интервал по заданной функции распределения, уметь находить плотность распределения и равномерное распределения. Еще одно отличие характеристики случайных величин непрерывного действия-включение функции классификации распределения вероятностей, обнаружение первого производного функции последовательности. Следовательно, характеристика распределения вероятностей дискретных случайных величин. Ключевые слова: Функция распределения, вероятность непрерывной случайной величины, дискретная случайная величина, интегральная функция распределения, первообразная. Annotation: Determine the type of random variable, find the probability of a random variable falling into a given interval by a given distribution function, be able to find the distribution density and uniform distribution. Properties of learning distribution function and evidence. X maybe to take the parameters of the range of values (a, b), that the probability distribution function is equal to the increment. Another difference in the characterization of continuous random variables is the inclusion of the classification function of the probability distribution, the detection of the first derivative of the sequence function. Keywords: Distribution function, probability of continuous random variable, discrete random variable, integral distribution function, antiderivative.


1972 ◽  
Vol 9 (03) ◽  
pp. 572-579 ◽  
Author(s):  
D. J. Emery

It is shown that, under certain conditions, satisfied by stable distributions, symmetric distributions, distributions with zero mean and finite second moment and other distributions, the distribution function of the maxima of successive partial sums of identically distributed random variables has an asymptotic property. This property implies the regular variation of the tail of the distribution of the hitting times of the associated random walk, and hence that these hitting times belong to the domain of attraction of a stable law.


1979 ◽  
Vol 28 (4) ◽  
pp. 499-509 ◽  
Author(s):  
R. A. Maller

AbstractA recent result of Rogozin on the relative stability of a distribution function is extended, by giving equivalences for relative stability in terms of truncated moments of the distribution and in terms of the real and imaginary parts of the characteristic function. As an application, the known results on centering distributions in the domain of attraction of a stable law are extended to the case of stochastically compact distributions.


2005 ◽  
Vol 6 (2) ◽  
pp. 13
Author(s):  
Bambang Avip Priatna Martadiputra

Let T be a nonnegative random variable representing the lifetimes of individuals in some population. Let f(t) denote the probability density function of T and F(t) denote the distribution function of T, the hazard function of T defined as  F(t) - 1  S(t)   whereS(t) f(t) h(t)   If equation (1) integrated we have cumulative hazard function H (t).  This paper describes application of kernel method for estimation of hazard function h (.) based censoring data. And then we will show that the hazard estimator is unbiased asymptotically, consistent, and normal asymptotically. Key word: kernel methods, estimation hazard function.


Filomat ◽  
2019 ◽  
Vol 33 (15) ◽  
pp. 4931-4942
Author(s):  
Mohamed Mohamed

In communication theory, for possible outcomes of an experiment, we have two basic problems for the statement of the experimenter: we may not have enough information (vague statement) or some of the information may be incorrect, which make inaccurate in either or both of these situations. In this article, a measure of inaccuracy and its residual between distributions of concomitants of generalized order statistics (1os) and parent random variable are extended. Results of inaccuracy for family distributions and stochastic comparisons are obtained. Furthermore, some properties of the proposed measure are discussed. The unique characterization of the distribution function of parent random variable by the inaccuracy is shown.


Sign in / Sign up

Export Citation Format

Share Document