Room-temperature ferromagnetism in (Ga, Mn)N thin films grown by pulsed laser deposition

2004 ◽  
Vol 36 (4-6) ◽  
pp. 403-408 ◽  
Author(s):  
D. O’Mahony ◽  
F. McGee ◽  
M. Venkatesan ◽  
J.G. Lunney ◽  
J.M.D. Coey
2011 ◽  
Vol 519 (10) ◽  
pp. 3312-3317 ◽  
Author(s):  
Hanbin Wang ◽  
Qiong He ◽  
Hao Wang ◽  
Xina Wang ◽  
Jun Zhang ◽  
...  

2007 ◽  
Vol 24 (4) ◽  
pp. 1073-1075 ◽  
Author(s):  
Teng Xiao-Yun ◽  
Yu Wei ◽  
Yang Li-Hua ◽  
Hao Qiu-Yan ◽  
Zhang Li ◽  
...  

2006 ◽  
Vol 928 ◽  
Author(s):  
Yuebin Zhang ◽  
Qing Liu ◽  
Thirumany Sritharan ◽  
Chee-Lip Gan ◽  
Sean Li

ABSTRACTCo-doped ZnO thin films with room-temperature ferromagnetism have been successfully synthesized on (001) Si substrates at 450 °C by pulsed-laser deposition using a Zn0.95Co0.05O ceramic target. Their microstructural properties are carefully studied using atomic force microscopy, x-ray diffraction and high-resolution transmission electron microscopy. The oxidation state of Co and the ratio of Co/Zn are examined by x-ray photoelectron spectroscopy, and magnetic measurements are performed using SQUID. The results show that a single-phase crystalline Co-doped ZnO film was grown with (002) preferential orientation and some edge dislocations formed during the film growth. The origin of room-temperature ferromagnetism is explored. The presence of nanoclusters of any magnetic phase can be ruled out. The dislocations, coupled with oxygen vacancy, may contribute to the ferromagnetic properties in the much diluted magnetic semiconductor.


2013 ◽  
Vol 760 ◽  
pp. 1-7 ◽  
Author(s):  
P. Mohanty ◽  
V. Ganeshan ◽  
Chandana Rath

Ti0.985Co0.015O2-δ thin films are deposited at 0, 0.1, 1 and 300 mTorr oxygen partial pressures by pulsed laser deposition (PLD) technique. Glancing angle x- ray diffraction (GAXRD) and micro-Raman spectroscopy show that the phase changes from rutile to anatase with increasing oxygen partial pressure. From Rutherford backscattering spectroscopic (RBS) technique, O to (Ti+Co) atomic ratio is found to increase with increasing oxygen partial pressure. Further, the simulation of RBS data while reveals non-uniform distribution of Co throughout the film deposited at 0 and 0.1 mTorr oxygen partial pressures, at 1 and 300 mTorr oxygen partial pressure, Co distribution is found to be uniform. Magnetic measurements confirm the room temperature ferromagnetism (RTFM) in all the films independent of the phase. Magnetic force microscopy (MFM) further supports the ferromagnetic nature of the films. We attribute the ferromagnetism in the films to be arisen from defects like oxygen vacancies rather than any contamination or Co clustering.


2010 ◽  
Vol 75 ◽  
pp. 202-207
Author(s):  
Victor Ríos ◽  
Elvia Díaz-Valdés ◽  
Jorge Ricardo Aguilar ◽  
T.G. Kryshtab ◽  
Ciro Falcony

Bi-Pb-Sr-Ca-Cu-O (BPSCCO) and Bi-Pb-Sb-Sr-Ca-Cu-O (BPSSCCO) thin films were grown on MgO single crystal substrates by pulsed laser deposition. The deposition was carried out at room temperature during 90 minutes. A Nd:YAG excimer laser ( = 355 nm) with a 2 J/pulse energy density operated at 30 Hz was used. The distance between the target and substrate was kept constant at 4,5 cm. Nominal composition of the targets was Bi1,6Pb0,4Sr2Ca2Cu3O and Bi1,6Pb0,4Sb0,1Sr2Ca2Cu3OSuperconducting targets were prepared following a state solid reaction. As-grown films were annealed at different conditions. As-grown and annealed films were characterized by XRD, FTIR, and SEM. The films were prepared applying an experimental design. The relationship among deposition parameters and their effect on the formation of superconducting Bi-system crystalline phases was studied.


2008 ◽  
Vol 202 (22-23) ◽  
pp. 5467-5470 ◽  
Author(s):  
Norihiro Sakai ◽  
Yoshihiro Umeda ◽  
Fumiaki Mitsugi ◽  
Tomoaki Ikegami

Sign in / Sign up

Export Citation Format

Share Document