Thermal boundary resistance enhancement through interfacial polarization electric field induced in GaN/InxGa1-xN superlattice

2021 ◽  
pp. 107035
Author(s):  
Subhranshu Sekhar Sahu ◽  
Bijay Kumar Sahoo
2018 ◽  
Author(s):  
Young Gwan Choi ◽  
Chan June Zhung ◽  
Chang Jae Roh ◽  
Hwi In Ju ◽  
Tae Yun Kim ◽  
...  

Author(s):  
Christopher M. Stanley ◽  
Benjamin K. Rader ◽  
Braxton H. D. Laster ◽  
Mahsa Servati ◽  
Stefan K. Estreicher

Author(s):  
Tingting Cai ◽  
Qing Chang ◽  
Bin Liu ◽  
Caihong Hao ◽  
Jinlong Yang ◽  
...  

The photocatalyst performance highly relies on the quantity of carrier transfer from the bulk to surface during the catalytic process. However, the polarization electric field induced by charge accumulation at...


Author(s):  
Claudio Giorgi ◽  
Angelo Morro

AbstractThe purpose of the paper is to establish vector-valued rate-type models for the hysteretic properties in deformable ferroelectrics within the framework of continuum thermodynamics. Unlike electroelasticity and piezoelectricity, in ferroelectricity both the polarization and the electric field are simultaneously independent variables so that the constitutive functions depend on both. This viewpoint is naturally related to the fact that an hysteresis loop is a closed curve in the polarization–electric field plane. For the sake of generality, the deformation of the material and the dependence on the temperature are allowed to occur. The constitutive functions are required to be consistent with the principle of objectivity and the second law of thermodynamics. Objectivity implies that the constitutive equations are form invariant within the set of Euclidean frames. Among other results, the second law requires a general property on the relation between the polarization and the electric field via a differential equation. This equation shows a dependence fully characterized by two quantities: the free energy and a function which is related to the dissipative character of the hysteresis. As a consequence, different hysteresis models may have the same free energy. Models compatible with thermodynamics are then determined by appropriate selections of the free energy and of the dissipative part. Correspondingly, major and minor hysteretic loops are plotted.


2015 ◽  
Vol 107 (8) ◽  
pp. 084103 ◽  
Author(s):  
M. Tovar-Padilla ◽  
L. Licea-Jimenez ◽  
S. A. Pérez-Garcia ◽  
J. Alvarez-Quintana

2021 ◽  
Vol 218 (23) ◽  
pp. 2170063
Author(s):  
Christopher M. Stanley ◽  
Benjamin K. Rader ◽  
Braxton H. D. Laster ◽  
Mahsa Servati ◽  
Stefan K. Estreicher

2013 ◽  
Vol 20 (3) ◽  
pp. 365-377 ◽  
Author(s):  
W. Lyatsky ◽  
M. L. Goldstein

Abstract. We present here the results of a study of interacting magnetic fields that involves a force normal to the reconnection layer. In the presence of such force, the reconnection layer becomes unstable to interchange disturbances. The interchange instability results in formation of tongues of heated plasma that leaves the reconnection layer through its wide surface rather than through its narrow ends, as is the case in traditional magnetic reconnection models. This plasma flow out of the reconnection layer facilitates the removal of plasma from the layer and leads to fast reconnection. The proposed mechanism provides fast reconnection of interacting magnetic fields and does not depend on the thickness of the reconnection layer. This instability explains the strong turbulence and bidirectional streaming of plasma that is directed toward and away from the reconnection layer that is observed frequently above reconnection layers. The force normal to the reconnection layer also accelerates the removal of plasma islands appearing in the reconnection layer during turbulent reconnection. In the presence of this force normal to the reconnection layer, these islands are removed from the reconnection layer by the "buoyancy force", as happens in the case of interchange instability that arises due to the polarization electric field generated at the boundaries of the islands.


Sign in / Sign up

Export Citation Format

Share Document