scholarly journals Pathogenic Pathways in Early-Onset Autosomal Recessive Parkinson's Disease Discovered Using Isogenic Human Dopaminergic Neurons

2020 ◽  
Vol 14 (1) ◽  
pp. 75-90 ◽  
Author(s):  
Tim Ahfeldt ◽  
Alban Ordureau ◽  
Christina Bell ◽  
Lily Sarrafha ◽  
Chicheng Sun ◽  
...  
Genome ◽  
2008 ◽  
Vol 51 (12) ◽  
pp. 1040-1046 ◽  
Author(s):  
Amy M. Todd ◽  
Brian E. Staveley

Parkinson’s disease (PD) is the most prevalent human neurodegenerative movement disorder and is characterized by a selective and progressive loss of the dopaminergic neurons. Mutations in the genes parkin and PTEN-induced putative kinase 1 (PINK1) result in autosomal recessive forms of PD. It has been suggested that parkin and Pink1 function in the same pathway in Drosophila , with Pink1 acting upstream of parkin. Previous work in our laboratory has shown the ability of parkin to rescue an α-synuclein-induced PD-like phenotype in Drosophila. To investigate the ability of Pink1 to protect against α-synuclein-induced toxicity, we have performed longevity, mobility, and histological studies to determine whether Drosophila Pink1 can rescue the α-synuclein phenotypes. We have found that overexpression of Pink1 results in the rescue of the α-synuclein-induced phenotype of premature loss of climbing ability, suppression of degeneration of the ommatidial array, and the suppression of α-synuclein-induced developmental defects in the Drosophila eye. These results mark the first demonstration of Pink1 counteracting PD phenotypes in a protein toxicity animal model, and they show that Pink1 is able to impart protection against potentially harmful proteins such as α-synuclein that would otherwise result in cellular stress.


2021 ◽  
Vol 12 ◽  
Author(s):  
Suzanne Lesage ◽  
Graziella Mangone ◽  
Christelle Tesson ◽  
Hélène Bertrand ◽  
Mustapha Benmahdjoub ◽  
...  

Autosomal recessive early-onset parkinsonism is clinically and genetically heterogeneous. Mutations of three genes, PRKN, PINK1, and DJ-1 cause pure phenotypes usually characterized by levodopa-responsive Parkinson's disease. By contrast, mutations of other genes, including ATP13A2, PLA2G6, FBXO7, DNAJC6, SYNJ1, VPS13C, and PTRHD1, cause rarer, more severe diseases with a poor response to levodopa, generally with additional atypical features. We performed data mining on a gene panel or whole-exome sequencing in 460 index cases with early-onset (≤ 40 years) Parkinson's disease, including 57 with autosomal recessive disease and 403 isolated cases. We identified two isolated cases carrying biallelic mutations of SYNJ1 (double-heterozygous p.D791fs/p.Y232H and homozygous p. Y832C mutations) and two siblings with the recurrent homozygous p.R258Q mutation. All four variants were absent or rare in the Genome Aggregation Database, were predicted to be deleterious on in silico analysis and were found to be highly conserved between species. The patient with both the previously unknown p.D791fs and p.Y232H mutations presented with dystonia-parkinsonism accompanied by a frontal syndrome and oculomotor disturbances at the age of 39. In addition, two siblings from an Algerian consanguineous family carried the homozygous p.R258Q mutation and presented generalized tonic-clonic seizures during childhood, with severe intellectual disability, followed by progressive parkinsonism during their teens. By contrast, the isolated patient with the homozygous p. Y832C mutation, diagnosed at the age of 20, had typical parkinsonism, with no atypical symptoms and slow disease progression. Our findings expand the mutational spectrum and phenotypic profile of SYNJ1-related parkinsonism.


2005 ◽  
Vol 32 (S 1) ◽  
Author(s):  
A Janzen ◽  
B Winner ◽  
M Lange ◽  
Z Kohl ◽  
K Pfeifer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document