Pink1 suppresses α-synuclein-induced phenotypes in a Drosophila model of Parkinson’s disease

Genome ◽  
2008 ◽  
Vol 51 (12) ◽  
pp. 1040-1046 ◽  
Author(s):  
Amy M. Todd ◽  
Brian E. Staveley

Parkinson’s disease (PD) is the most prevalent human neurodegenerative movement disorder and is characterized by a selective and progressive loss of the dopaminergic neurons. Mutations in the genes parkin and PTEN-induced putative kinase 1 (PINK1) result in autosomal recessive forms of PD. It has been suggested that parkin and Pink1 function in the same pathway in Drosophila , with Pink1 acting upstream of parkin. Previous work in our laboratory has shown the ability of parkin to rescue an α-synuclein-induced PD-like phenotype in Drosophila. To investigate the ability of Pink1 to protect against α-synuclein-induced toxicity, we have performed longevity, mobility, and histological studies to determine whether Drosophila Pink1 can rescue the α-synuclein phenotypes. We have found that overexpression of Pink1 results in the rescue of the α-synuclein-induced phenotype of premature loss of climbing ability, suppression of degeneration of the ommatidial array, and the suppression of α-synuclein-induced developmental defects in the Drosophila eye. These results mark the first demonstration of Pink1 counteracting PD phenotypes in a protein toxicity animal model, and they show that Pink1 is able to impart protection against potentially harmful proteins such as α-synuclein that would otherwise result in cellular stress.

Genome ◽  
2017 ◽  
Vol 60 (1) ◽  
pp. 1-7 ◽  
Author(s):  
P. Githure M’Angale ◽  
Brian E. Staveley

Mutations in High temperature requirement A2 (HtrA2), also designated PARK13, which lead to the loss of its protease activity, have been associated with Parkinson’s disease (PD). HtrA2 is a mitochondrial protease that translocates to the cytosol upon the initiation of apoptosis where it participates in the abrogation of inhibitors of apoptosis (IAP) inhibition of caspases. Here, we demonstrate that the loss of the HtrA2 function in the dopaminergic neurons of Drosophila melanogaster results in PD-like phenotypes, and we attempt to restore the age-dependent loss in locomotor ability by co-expressing the sole pro-survival Bcl-2 homologue Buffy. The inhibition of HtrA2 in the dopaminergic neurons of Drosophila resulted in shortened lifespan and impaired climbing ability, and the overexpression of Buffy rescued the reduction in lifespan and the age-dependent loss of locomotor ability. In supportive experiments, the inhibition of HtrA2 in the Drosophila eye results in eye defects, marked by reduction in ommatidia number and increased disruption of the ommatidial array; phenotypes that are suppressed by the overexpression of Buffy.


Author(s):  
Xin He ◽  
Yue Xie ◽  
Qiongping Zheng ◽  
Zeyu Zhang ◽  
Shanshan Ma ◽  
...  

Impairment of autophagy has been strongly implicated in the progressive loss of nigral dopaminergic neurons in Parkinson’s disease (PD). Transcription factor E3 (TFE3), an MiTF/TFE family transcription factor, has been identified as a master regulator of the genes that are associated with lysosomal biogenesis and autophagy. However, whether TFE3 is involved in parkinsonian neurodegeneration remains to be determined. In this study, we found decreased TFE3 expression in the nuclei of the dopaminergic neurons of postmortem human PD brains. Next, we demonstrated that TFE3 knockdown led to autophagy dysfunction and neurodegeneration of dopaminergic neurons in mice, implying that reduction of nuclear TFE3 may contribute to autophagy dysfunction-mediated cell death in PD. Further, we showed that enhancement of autophagy by TFE3 overexpression dramatically reversed autophagy downregulation and dopaminergic neurons loss in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of PD. Taken together, these findings demonstrate that TFE3 plays an essential role in maintaining autophagy and the survival of dopaminergic neurons, suggesting TFE3 activation may serve as a promising strategy for PD therapy.


Author(s):  
Vaibhav Walia ◽  
Ashish Gakkhar ◽  
Munish Garg

Parkinson's disease (PD) is a neurodegenerative disorder in which a progressive loss of the dopaminergic neurons occurs. The loss of the neurons is most prominent in the substantia nigra region of the brain. The prevalence of PD is much greater among the older patients suggesting the risk of PD increases with the increase of age. The exact cause of the neurodegeneration in PD is not known. In this chapter, the authors introduce PD, demonstrate its history, pathogenesis, neurobiology, sign and symptoms, diagnosis, and pharmacotherapy.


Diagnostics ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 402
Author(s):  
Sabyasachi Chakraborty ◽  
Satyabrata Aich ◽  
Hee-Cheol Kim

Parkinson’s Disease is a neurodegenerative disease that affects the aging population and is caused by a progressive loss of dopaminergic neurons in the substantia nigra pars compacta (SNc). With the onset of the disease, the patients suffer from mobility disorders such as tremors, bradykinesia, impairment of posture and balance, etc., and it progressively worsens in the due course of time. Additionally, as there is an exponential growth of the aging population in the world the number of people suffering from Parkinson’s Disease is increasing and it levies a huge economic burden on governments. However, until now no therapeutic method has been discovered for completely eradicating the disease from a person’s body after it’s onset. Therefore, the early detection of Parkinson’s Disease is of paramount importance to tackle the progressive loss of dopaminergic neurons in patients to serve them with a better life. In this study, 3T T1-weighted MRI scans were acquired from the Parkinson’s Progression Markers Initiative (PPMI) database of 406 subjects from baseline visit, where 203 were healthy and 203 were suffering from Parkinson’s Disease. Following data pre-processing, a 3D convolutional neural network (CNN) architecture was developed for learning the intricate patterns in the Magnetic Resonance Imaging (MRI) scans for the detection of Parkinson’s Disease. In the end, it was observed that the developed 3D CNN model performed superiorly by completely aligning with the hypothesis of the study and plotted an overall accuracy of 95.29%, average recall of 0.943, average precision of 0.927, average specificity of 0.9430, f1-score of 0.936, and Receiver Operating Characteristic—Area Under Curve (ROC-AUC) score of 0.98 for both the classes respectively.


2018 ◽  
Vol 19 (11) ◽  
pp. 3343 ◽  
Author(s):  
Emi Nagoshi

Parkinson’s disease (PD) is the most common cause of movement disorders and is characterized by the progressive loss of dopaminergic neurons in the substantia nigra. It is increasingly recognized as a complex group of disorders presenting widely heterogeneous symptoms and pathology. With the exception of the rare monogenic forms, the majority of PD cases result from an interaction between multiple genetic and environmental risk factors. The search for these risk factors and the development of preclinical animal models are in progress, aiming to provide mechanistic insights into the pathogenesis of PD. This review summarizes the studies that capitalize on modeling sporadic (i.e., nonfamilial) PD using Drosophila melanogaster and discusses their methodologies, new findings, and future perspectives.


2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
Tahira Farooqui ◽  
Akhlaq A. Farooqui

Parkinson's disease (PD) is a neurodegenerative movement disorder of unknown etiology. PD is characterized by the progressive loss of dopaminergic neurons in the substantia nigra, depletion of dopamine in the striatum, abnormal mitochondrial and proteasomal functions, and accumulation ofα-synuclein that may be closely associated with pathological and clinical abnormalities. Increasing evidence indicates that both oxidative stress and inflammation may play a fundamental role in the pathogenesis of PD. Oxidative stress is characterized by increase in reactive oxygen species (ROS) and depletion of glutathione. Lipid mediators for oxidative stress include 4-hydroxynonenal, isoprostanes, isofurans, isoketals, neuroprostanes, and neurofurans. Neuroinflammation is characterized by activated microglial cells that generate proinflammatory cytokines, such as TNF-αand IL-1β. Proinflammatory lipid mediators include prostaglandins and platelet activating factor, together with cytokines may play a prominent role in mediating the progressive neurodegeneration in PD.


2020 ◽  
Vol 17 (10) ◽  
pp. 1261-1269
Author(s):  
Yasir Hasan Siddique ◽  
Rahul ◽  
Mantasha Idrisi ◽  
Mohd. Shahid

Background: Parkinson’s disease is a common neurodegenerative disorder characterized by selective loss of dopaminergic neurons in the substantia nigra pars compacta. Introduction: The effects of alpha synuclein, parkin mutation and pharmacological agents have been studied in the Drosophila model. Methods: The effect of cabergoline was studied on the cognitive impairments exhibited by the transgenic Drosophila expressing human alpha-synuclein in the neurons. The PD flies were allowed to feed on the diet having 0.5, 1 and 1.5 μM of cabergoline. Results and Discussion: The exposure of cabergoline not only showed a dose-dependent significant delay in the cognitive impairments but also prevented the loss of dopaminergic neurons. Molecular docking studies showed the positive interaction between cabergoline and alpha-synuclein. Conclusion: The results suggest a protective effect of cabergoline against the cognitive impairments.


Author(s):  
Yasir Hasan Siddique ◽  
Falaq Naz ◽  
Mantasha I. ◽  
M. Shahid

Background: Parkinson’s Disease (PD) is characterized by the aggregation of α-synuclein, formation of Lewy bodies and the selective loss of dopaminergic neurons of mesencephalic substantia nigra pars compacta (SNC) with the debilitating motor symptoms. Introduction: The available treatment for PD provides symptomatic relief with no control on the progression of the disease. The treatment is also associated with several side effects. As the neurodegeneration in PD is also associated with the oxidative stress, antioxidants from plants could play an important role in reducing the PD symptoms. With this aim we decided to study the effect of Lemon grass extract (LGE) on the transgenic Drosophila model of PD expressing human alpha synuclein in the neurons. Methods: The PD flies allowed were allowed to feed on different doses of LGE established in diet for 24 days and then assayed for climbing ability and oxidative stress markers. The molecular docking study was also performed for citral (the component of the extract) and human α-synuclein. Results and discussion: A dose dependent significant improvement in the climbing ability and reduction in oxidative stress was observed in the PD flies exposed to LGE. In our earlier study on LGE, citral was found to be the main component of the extract by GC-MS analysis. The docking results also support the positive interaction between citral and human α-synuclein. Conclusion: The results suggests that LGE is potemnt in reducing the PD symptoms being mimicked in transgenic Drosophila.


2011 ◽  
Vol 2011 ◽  
pp. 1-14 ◽  
Author(s):  
Verónica Muñoz-Soriano ◽  
Nuria Paricio

Parkinson's disease (PD) is the second most common neurodegenerative disorder and is mainly characterized by the selective and progressive loss of dopaminergic neurons, accompanied by locomotor defects. Although most PD cases are sporadic, several genes are associated with rare familial forms of the disease. Analyses of their function have provided important insights into the disease process, demonstrating that three types of cellular defects are mainly involved in the formation and/or progression of PD: abnormal protein aggregation, oxidative damage, and mitochondrial dysfunction. These studies have been mainly performed in PD models created in mice, fruit flies, and worms. Among them, Drosophila has emerged as a very valuable model organism in the study of either toxin-induced or genetically linked PD. Indeed, many of the existing fly PD models exhibit key features of the disease and have been instrumental to discover pathways relevant for PD pathogenesis, which could facilitate the development of therapeutic strategies.


Sign in / Sign up

Export Citation Format

Share Document