drosophila model
Recently Published Documents


TOTAL DOCUMENTS

624
(FIVE YEARS 177)

H-INDEX

64
(FIVE YEARS 7)

2022 ◽  
Vol 226 (1) ◽  
pp. S516-S517
Author(s):  
Ki Hoon Ahn ◽  
Eun-jin Wang ◽  
Jay Kim ◽  
Sung Hee Han ◽  
Jae Hyi Jang ◽  
...  

2021 ◽  
Author(s):  
Pavitra Prakash ◽  
Arpit Kumar Pradhan ◽  
Vasu Sheeba

Circadian disturbances are early features of neurodegenerative diseases, including Huntington's Disease (HD), affecting the quality of life of patients and caregivers. Emerging evidence suggests that circadian decline feeds-forward to neurodegenerative symptoms, exacerbating them, highlighting a need for restoring circadian health. Therefore, we asked whether any of the known neurotoxic modifiers can suppress circadian dysfunction. We performed a screen of neurotoxicity-modifier genes to suppress circadian behavioural arrhythmicity in a Drosophila circadian HD model. Notably, the molecular chaperones HSP40 and HSP70 (Heat Shock Protein) emerged as significant suppressors in the circadian context, with HSP40 being the more potent mitigator of HD-induced deficits. Upon HSP40 overexpression in the Drosophila circadian ventrolateral neurons (LNv), the behavioural rhythm rescue was associated with neuronal rescue of loss in circadian proteins from small LNv soma. Specifically, there was a restoration of the molecular clock protein Period and its oscillations in young flies and a long-lasting rescue of the output neuropeptide Pigment Dispersing Factor. Significantly, there was a reduction in the expanded Huntingtin inclusion load, concomitant with the appearance of a spot-like Huntingtin form. Thus, we provide evidence for the first time that implicates the neuroprotective chaperone HSP40 in circadian rehabilitation. Given the importance of proteostasis and circadian health in neurodegenerative diseases, the involvement of molecular chaperones in circadian maintenance has broader therapeutic implications.


Author(s):  
Deepika Vasudevan ◽  
Hidetaka Katow ◽  
Huai-Wei Huang ◽  
Grace Tang ◽  
Hyung Don Ryoo

Metazoans have evolved various quality control mechanisms to cope with cellular stress inflicted by external and physiological conditions. ATF4 is a major effector of the Integrated Stress Response (ISR), an evolutionarily conserved pathway that mediates adaptation to various cellular stressors. Loss of function of Drosophila ATF4, encoded by the gene cryptocephal (crc), results in lethality during pupal development. The roles of crc in Drosophila disease models and in adult tissue homeostasis thus remain poorly understood. Here, we report that a protein-trap MiMIC insertion in the crc locus generates a crc-GFP fusion protein that allows visualization of crc activity in vivo. This allele also acts as a hypomorphic mutant that uncovers previously unknown roles for crc. Specifically, the crc protein-trap line shows crc-GFP induction in a Drosophila model for Retinitis Pigmentosa (RP). This crc allele renders flies more vulnerable to amino acid deprivation and age-dependent retinal degeneration. These mutants also show defects in wing veins and oocyte maturation. Together, our data reveal previously unknown roles for crc in development, cellular homeostasis and photoreceptor survival.


Author(s):  
Patricia Jarabo ◽  
Carmen de Pablo ◽  
Amanda González-Blanco ◽  
Sergio Casas-Tintó

Glioblastoma (GB) is the most frequent malignant brain tumor among adults and currently there is no effective treatment. It is a very aggressive tumor that grows fast and spreads through the brain causing the death of patients in 15 months. GB cells mutate frequently and generate a heterogeneous population of tumoral cells genetically distinct. Thus, the contribution of genes and signaling pathways relevant for GB progression is of great relevance. We use a Drosophila model of GB that reproduces the features of human GB, and describe the upregulation of the circadian gene cry in GB patients and in a Drosophila GB model. We study the contribution of cry to the expansion of GB cells, to the neurodegeneration caused by GB, and to premature death and determine that cry is required for GB progression. Moreover, we analyze the mechanisms that regulate cry expression by the PI3K pathway. Finally, we conclude that cry is necessary and sufficient to regulate myc expression in GB. These results contribute to the understanding of the signals that impulse GB malignancy and lethality and open novel opportunities for the treatment of GB patients.


iScience ◽  
2021 ◽  
pp. 103702
Author(s):  
Assunta Maria Casale ◽  
Francesco Liguori ◽  
Federico Ansaloni ◽  
Ugo Cappucci ◽  
Sara Finaurini ◽  
...  

2021 ◽  
Vol 22 (22) ◽  
pp. 12131
Author(s):  
Catherine R. Beamish ◽  
Tanzy M. Love ◽  
Matthew D. Rand

Mercury ranks third on the U.S. Agency of Toxic Substances and Disease Registry priority list of hazardous substances, behind only arsenic and lead. We have undertaken uncovering the mechanisms underlying the developmental toxicity of methylmercury (MeHg), inorganic mercury (HgCl2), lead acetate (Pb), and sodium arsenite (As). To probe these differences, we used the Drosophila model, taking advantage of three developmental transitions—pupariation, metamorphosis, and eclosion—to differentiate potentially unique windows of toxicity. We elaborated dose response profiles for each individual metal administered in food and accounted for internal body burden, also extending analyses to evaluate combinatorial metal mixture effects. We observed all four metals producing larval lethality and delayed pupariation, with MeHg being most potent. Compared to other metals, MeHg’s potency is caused by a higher body burden with respect to dose. MeHg uniquely caused dose-dependent failure in eclosion that was unexpectedly rescued by titrating in HgCl2. Our results highlight a unique developmental window and toxicokinetic properties where MeHg acts with specificity relative to HgCl2, Pb, and As. These findings will serve to refine future studies aimed at revealing tissue morphogenesis events and cell signaling pathways, potentially conserved in higher organisms, that selectively mediate MeHg toxicity and its antagonism by HgCl2.


Foods ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2720
Author(s):  
Tania Merinas-Amo ◽  
María-Dolores Lozano-Baena ◽  
Sara Obregón-Cano ◽  
Ángeles Alonso-Moraga ◽  
Antonio de Haro-Bailón

Brassica rapa L. subsp. rapa (turnip greens), a traditionally consumed vegetable, is well-known due to its high content of glucosinolates, which are secondary metabolites with a positive biological activity for human health. Our hypothesis has been based on the relation between B. rapa glucosinolate content and its healthy properties, and our aim is to establish guidelines for safe B. rapa vegetable consumption. Three B. rapa cultivars (143N5, 143N7 and 163N7) have been characterized by HPLC analysis of purified extracts from leaf samples in order to determine their glucosinolate content and to relate this content to beneficial effects on DNA protection, lifespan extension and chemoprevention. In order to ascertain the heath properties in vitro and in vivo, toxicity activities were assayed in the Drosophila melanogaster and leukaemia cell models; genomic safety was also assessed in both models using genotoxicity, fragmentation and comet assay. The Drosophila model has also been used to study the antioxidative activity and the longevity induction. Our results showed a relationship between B. rapa glucosinolate content and its safety and benefices in its consumption. Gluconapin, the main B. rapa glucosinolate, was directly related with these wholesome effects. The relevant conclusion in the present research is focused on B. rapa cultivar 163N7 due to its high gluconapin content and low progoitrin content, which exert anti-cancer and DNA protection properties and could be recommended as being safe and healthy for human consumption.


2021 ◽  
pp. 153537022110469
Author(s):  
Kumari Aditi ◽  
Akanksha Singh ◽  
Mallikarjun N Shakarad ◽  
Namita Agrawal

Huntington’s disease (HD) is a devastating polyglutamine disorder characterized by extensive neurodegeneration and metabolic abnormalities at systemic, cellular and intracellular levels. Metabolic alterations in HD manifest as abnormal body weight, dysregulated biomolecule levels, impaired adipocyte functions, and defective energy state which exacerbate disease progression and pose acute threat to the health of challenged individuals in form of insulin resistance, cardiovascular disease, and energy crisis. To colossally mitigate disease symptoms, we tested the efficacy of curcumin in Drosophila model of HD. Curcumin is the bioactive component of turmeric ( Curcuma longa Linn), well-known for its ability to modulate metabolic activities. We found that curcumin effectively managed abnormal body weight, dysregulated lipid content, and carbohydrate level in HD flies. In addition, curcumin administration lowered elevated reactive-oxygen-species levels in adult adipose tissue of diseased flies, and improved survival and locomotor function in HD flies at advanced disease stage. Altogether, these findings clearly suggest that curcumin efficiently attenuates metabolic derangements in HD flies and can prove beneficial in alleviating the complexities associated with HD.


Author(s):  
Dena Johnson-Schlitz ◽  
Julie A. Fischer ◽  
Hannah J. Schiffman ◽  
Amanda R. Scharenbrock ◽  
Zachariah P. G. Olufs ◽  
...  

We tested the hypothesis that obesity influences the pharmacodynamics of volatile general anesthetics (VGAs) by comparing effects of anesthetic exposure on mortality from traumatic brain injury (TBI) in lean and obese Drosophila melanogaster. We induced TBI with a High-Impact Trauma device. Starvation-selection over multiple generations resulted in an obese phenotype (SS flies). Fed flies served as lean controls (FC flies). Adult (1-7 day old) SS and FC flies were exposed to equianesthetic doses of isoflurane or sevoflurane either before or after TBI. The principal outcome was percent mortality 24 hours after injury, expressed as the Mortality Index at 24 hours (MI24). TBI resulted in lower MI24 in FC than in SS flies (21 (2.35) and 57.8 (2.14), respectively n= 12, p=0.0001). Preexposure to isoflurane or sevoflurane preconditioned FC flies to TBI reducing the risk of death to 0.53 [0.25 to 1.13] and 0.82 [0.43 to 1.58], respectively, but had no preconditioning effect in SS flies. Postexposure to isoflurane or sevoflurane increased the risk of death in SS flies. Only postexposure to isoflurane increased the risk in FC flies (1.39 [0.81 to 2.38]). Thus, obesity affects the pharmacodynamics of VGAs, thwarting the preconditioning effect of isoflurane and sevoflurane in TBI.


Sign in / Sign up

Export Citation Format

Share Document