Introduction: Soil erosion and nutrient losses in the Hilly Purple Soil area in China

2009 ◽  
Vol 105 (2) ◽  
pp. 283-284 ◽  
Author(s):  
Jannes Stolte ◽  
Xuezheng Shi ◽  
Coen J. Ritsema
2015 ◽  
Vol 12 (1) ◽  
pp. 134-144 ◽  
Author(s):  
Jia-liang Tang ◽  
Xun-qiang Cheng ◽  
Bo Zhu ◽  
Mei-rong Gao ◽  
Tao Wang ◽  
...  

2007 ◽  
Vol 27 (6) ◽  
pp. 2191-2198 ◽  
Author(s):  
Lin Chaowen ◽  
Tu Shihua ◽  
Huang Jingjing ◽  
Chen Yibing

Land ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 134
Author(s):  
Xiaofang Huang ◽  
Lirong Lin ◽  
Shuwen Ding ◽  
Zhengchao Tian ◽  
Xinyuan Zhu ◽  
...  

Soil erodibility K factor is an important parameter for evaluating soil erosion vulnerability and is required for soil erosion prediction models. It is also necessary for soil and water conservation management. In this study, we investigated the spatial variability characteristics of soil erodibility K factor in a watershed (Changyan watershed with an area of 8.59 km2) of Enshi, southwest of Hubei, China, and evaluated its influencing factors. The soil K values were determined by the EPIC model using the soil survey data across the watershed. Spatial K value prediction was conducted by regression-kriging using geographic data. We also assessed the effects of soil type, land use, and topography on the K value variations. The results showed that soil erodibility K values varied between 0.039–0.052 t·hm2·h/(hm2·MJ·mm) in the watershed with a block-like structure of spatial distribution. The soil erodibility, soil texture, and organic matter content all showed positive spatial autocorrelation. The spatial variability of the K value was related to soil type, land use, and topography. The calcareous soil had the greatest K value on average, followed by the paddy soil, the yellow-brown soil (an alfisol), the purple soil (an inceptisol), and the fluvo-aquic soil (an entisol). The soil K factor showed a negative correlation with the sand content but was positively related to soil silt and clay contents. Forest soils had a greater ability to resist to erosion compared to the cultivated soils. The soil K values increased with increasing slope and showed a decreasing trend with increasing altitude.


2018 ◽  
Vol 210 ◽  
pp. 41-48 ◽  
Author(s):  
Cuiting Dai ◽  
Yaojun Liu ◽  
Tianwei Wang ◽  
Zhaoxia Li ◽  
Yiwen Zhou

1997 ◽  
Vol 89 (6) ◽  
pp. 887-893 ◽  
Author(s):  
Clinton C. Shock ◽  
Joe H. Hobson ◽  
Majid Seddigh ◽  
Byron M. Shock ◽  
Timothy D. Stieber ◽  
...  

2016 ◽  
Vol 64 (3) ◽  
pp. 237-245 ◽  
Author(s):  
Feng Qian ◽  
Dongbin Cheng ◽  
Wenfeng Ding ◽  
Jiesheng Huang ◽  
Jingjun Liu

Abstract Hydrological processes play important roles in soil erosion processes of the hillslopes. This study was conducted to investigate the hydrological processes and the associated erosional responses on the purple soil slope. Based on a comprehensive survey of the Wangjiaqiao watershed in the Three Gorges Reservoir, four typical slope gradients (5°, 10°, 15°and 20°) were applied to five rainfall intensities (0.6, 1.1, 1.61, 2.12 and 2.54 mm·min-1). The results showed that both surface and subsurface runoff varied greatly depending on the rainfall intensity and slope gradient. Surface runoff volume was 48.1 to 280.1 times of that for subsurface runoff. The critical slope gradient was about 10°. The sediment yield rate increased with increases in both rainfall intensity and slope gradient, while the effect of rainfall intensity on the sediment yield rate was greater than slope gradient. There was a good linear relationship between sediment yield rate and Reynolds numbers, flow velocity and stream power, while Froude numbers, Darcy-Weisbach and Manning friction coefficients were not good hydraulic indicators of the sediment yield rate of purple soil erosion. Among the three good indicators (Re, v and w), stream power was the best predictor of sediment yield rate (R2 = 0.884). Finally, based on the power regression relationship between sediment yield rate, runoff rate, slope gradient and rainfall intensity, an erosion model was proposed to predict the purple soil erosion (R2 = 0.897). The results can help us to understand the relationship between flow hydraulics and sediment generation of slope erosion and offer useful data for the building of erosion model in purple soil.


2012 ◽  
Vol 92 (2) ◽  
pp. 277-284 ◽  
Author(s):  
Yingwei Ai ◽  
Zhaoqiong Chen ◽  
Peijun Guo ◽  
Lixia Zeng ◽  
Hao Liu ◽  
...  

Ai, Y., Chen, Z., Guo, P., Zeng, L., Liu, H., Da, Z. and Li, W. 2012. Fractal characteristics of synthetic soil for cut slope revegetation in the Purple soil area of China. Can. J. Soil Sci. 92: 277–284. Revegetation of the cut slopes formed during railroad construction can reduce potential hazards, improve the quality of the environment, and beautify the landscape along the railways. Artificial backfill soil is required to anchor the plant roots and satisfy the plant's moisture and nutritional demands on the bare rock face. The soil particle size distribution (PSD), fertility and stability of the reconstructed topsoils are affected by the soil type used as a backfill. In this study, a fractal method was used to characterize the PSD. The relationships between the fractal dimension of the PSD and selected soil properties, including soil moisture, bulk density, and organic carbon are discussed. Various soil samples were obtained from four different land-use environments in the purple soil area in southwest, China: a cut slope reconstructed from rock fragments (RF), a cut slope reconstructed with agricultural soil (AS), a naturally developed slope (NS), and a cropland used for growing Vicia faba (CL). Analysis of the soil samples revealed that: (1) from CL to RF, the sand content increased from 59.6 to 83.9%; (2) the fractal dimension of PSD ranged from 2.605 for RF to 2.725 for CL, being the greater the sand content and the lower the fractal dimension; (3) there existed marked linear relationships between the fractal dimensions and selected physicochemical properties of the soils. Therefore, the fractal dimension of PSD can be a useful parameter with which to monitor the structural deterioration and nutrient loss of the synthetic soils used for the revegetation of a cut slope.


Sign in / Sign up

Export Citation Format

Share Document