Advantage of an in-situ reactive incorporation over direct particles incorporation of V2O5 for a competitive plasma electrolysis coating

2020 ◽  
Vol 399 ◽  
pp. 126200 ◽  
Author(s):  
Mosab Kaseem ◽  
Tassawar Hussain ◽  
Zeeshan Ur Rehman ◽  
Mosab Jaser Banisalman ◽  
Young Gun Ko
Keyword(s):  
Author(s):  
Veta R. Mukaeva ◽  
Mikhail V. Gorbatkov ◽  
Ruzil G. Farrakhov ◽  
Denis M. Lazarev ◽  
Andrey G. Stotskiy ◽  
...  

2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Zhijiang Wang ◽  
Henry Hu ◽  
Xueyuan Nie

The natural brittleness of oxide ceramics heavily inhibits their more extensive applications. In present research, a highly flexible Al2O3/Al/Al2O3hybrid composite was fabricated by employing plasma electrolysis oxidation toin situgrow alumina layers on Al foil, in which an outside layer of nanostructured polycrystalline oxide ceramic was composed of nanosized grains with the size of around 17 nm. Due to shear band formation, nanosized circle bubbles prolonging the crack path, grain rotation, and deformation, the fabricated Al2O3/Al/Al2O3hybrid composite contains no observable cracks even after being bent on a cylindrical bar with a curvature of 1.5 mm. The composite exhibits alumina stiffness at the elastic stage and aluminum ductility during plastic deformation, which provides high flexibility with the well-integrated properties of the components. In a synergistic interaction, the alumina on the outside exhibited a strain of 0.33% at room temperature, which was higher than optimum value of 0.25% presented by reported most flexible oxide ceramics. With the unique characteristics and properties, the Al2O3/Al/Al2O3composite demonstrates a great potential for various engineering applications.


1984 ◽  
Vol 75 ◽  
pp. 743-759 ◽  
Author(s):  
Kerry T. Nock

ABSTRACTA mission to rendezvous with the rings of Saturn is studied with regard to science rationale and instrumentation and engineering feasibility and design. Future detailedin situexploration of the rings of Saturn will require spacecraft systems with enormous propulsive capability. NASA is currently studying the critical technologies for just such a system, called Nuclear Electric Propulsion (NEP). Electric propulsion is the only technology which can effectively provide the required total impulse for this demanding mission. Furthermore, the power source must be nuclear because the solar energy reaching Saturn is only 1% of that at the Earth. An important aspect of this mission is the ability of the low thrust propulsion system to continuously boost the spacecraft above the ring plane as it spirals in toward Saturn, thus enabling scientific measurements of ring particles from only a few kilometers.


Author(s):  
R. E. Herfert

Studies of the nature of a surface, either metallic or nonmetallic, in the past, have been limited to the instrumentation available for these measurements. In the past, optical microscopy, replica transmission electron microscopy, electron or X-ray diffraction and optical or X-ray spectroscopy have provided the means of surface characterization. Actually, some of these techniques are not purely surface; the depth of penetration may be a few thousands of an inch. Within the last five years, instrumentation has been made available which now makes it practical for use to study the outer few 100A of layers and characterize it completely from a chemical, physical, and crystallographic standpoint. The scanning electron microscope (SEM) provides a means of viewing the surface of a material in situ to magnifications as high as 250,000X.


Author(s):  
J.R. Mcintosh

The mitotic apparatus is a structure of obvious biological and medical interest, but it has proved to be a difficult cellular machine to understand. The chemical composition of the spindle is only slightly elucidated, largely because of the difficulties in preparing useful isolates of the structure. Chemical studies of the mitotic spindle have been reviewed elsewhere (Mcintosh, 1977), and will not be discussed further here. One would think that structural studies on the mitotic apparatus (MA) in situ would be straightforward, but even with this approach there is some disagreement in the results obtained with various methods and by different investigators. In this paper I will review briefly the approaches which have been used in structural studies of the MA, pointing out the strengths and problems of each approach. I will summarize the principal findings of the different methods, and identify what seem to be fruitful avenues for further work.


Sign in / Sign up

Export Citation Format

Share Document