Zn based hydroxyapatite based coatings deposited on a novel FeMoTaTiZr high entropy alloy used for bone implants

2021 ◽  
pp. 101591
Author(s):  
Mirela M. Codescu ◽  
Alina Vladescu ◽  
Victor Geanta ◽  
Ionelia Voiculescu ◽  
Iulian Pana ◽  
...  
Author(s):  
Mirela Maria Codescu ◽  
Alina Vladescu ◽  
Victor Geanta ◽  
Ionelia Voiculescu ◽  
Iulian Pana ◽  
...  

In this paper, a novel biocompatible alloy defined as FeMoTaTiZr was obtained and functionalized by hydroxyapatite-based coatings (HAP) in order to increase their biocompatibility, bioactivity, and resistance to corrosion for to be used as bone implants. To obtain the surface with antibacterial properties, the HAP coatings were doped with small amount of Zn. The alloy was prepared using the VAR (Vacuum Arc Remelting) equipment, while the coatings by RF magnetron sputtering method. The EDS analysis confirmed the presence of Ca and P in the case of all developed coatings, having Ca/P or Ca/(P+Zn) ratio of about 1.70 and 1.66, respectively. The XRD and ATR-FTIR investigations confirmed the presence of calcium phosphate phases. The roughness of uncoated substrates increased after coating with HAP, and it was considerably increased by the Zn addition. The electrochemical tests showed that the un-doped HAP exhibited good corrosion behavior, while Zn doped HAP coatings have a high dissolution rate in fetal bovine serum, being more proper as a biodegradable material.


2019 ◽  
Author(s):  
Nirmal Kumar ◽  
Subramanian Nellaiappan ◽  
Ritesh Kumar ◽  
Kirtiman Deo Malviya ◽  
K. G. Pradeep ◽  
...  

<div>Renewable harvesting clean and hydrogen energy using the benefits of novel multicatalytic materials of high entropy alloy (HEA equimolar Cu-Ag-Au-Pt-Pd) from formic acid with minimum energy input has been achieved in the present investigation. The synthesis effect of pristine elements in the HEA drives the electro-oxidation reaction towards non-carbonaceous pathway . The atomistic simulation based on DFT rationalize the distinct lowering of the d-band center for the individual atoms in the HEA as compared to the pristine counterparts. This catalytic activity of the HEA has also been extended to methanol electro-oxidation to show the unique capability of the novel catalyst. The nanostructured HEA, properties using a combination of casting and cry omilling techniques can further be utilized as fuel cell anode in direct formic acid/methanol fuel cells (DFFE).<br></div>


Author(s):  
Janez Dolinšek ◽  
Stanislav Vrtnik ◽  
J. Lužnik ◽  
P. Koželj ◽  
M. Feuerbacher

2006 ◽  
Vol 31 (6) ◽  
pp. 723-736 ◽  
Author(s):  
Keng-Hao Cheng ◽  
Chia-Han Lai ◽  
Su-Jien Lin ◽  
Jien-Wei Yeh

2019 ◽  
Author(s):  
Dong Geun Kim ◽  
Yong Hee Jo ◽  
Junha Yang ◽  
Won-Mi Choi ◽  
Hyoung Seop Kim ◽  
...  

2019 ◽  
Author(s):  
V. Soni ◽  
Oleg N. Senkov, PhD ◽  
Jean-Philippe Couzinie, PhD ◽  
Yufeng Zheng, PhD ◽  
Bharat Gwalani, PhD ◽  
...  

2020 ◽  
Author(s):  
Raymond Kwesi Nutor ◽  
Muhammad Azeemullah ◽  
Q. P. Cao ◽  
X. D. Wang ◽  
D.X. Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document