Proposal of Desulfosarcina ovata subsp. sediminis subsp. nov., a novel toluene-degrading sulfate-reducing bacterium isolated from tidal flat sediment of Tokyo Bay

2020 ◽  
Vol 43 (5) ◽  
pp. 126109
Author(s):  
Miho Watanabe ◽  
Yuriko Higashioka ◽  
Hisaya Kojima ◽  
Manabu Fukui
2014 ◽  
Vol 64 (Pt_11) ◽  
pp. 3660-3667 ◽  
Author(s):  
Takao Iino ◽  
Koji Mori ◽  
Takashi Itoh ◽  
Takuji Kudo ◽  
Ken-ichiro Suzuki ◽  
...  

A mesophilic, chemoheterotrophic bacterium, strain Fu11-5T, was isolated from tidal-flat sediment from Tokyo Bay, Chiba, Japan. Cells of strain Fu11-5T were facultatively aerobic, Gram-negative, non-sporulating, non-motile and rod-shaped (1.9–6.9 µm long). Strain Fu11-5T grew optimally at 35–37 °C and pH 6.5–7.0 and with 1–2 % (w/v) NaCl. Oxygen and l-cysteine were used as an alternative electron acceptor and donor, respectively. Strain Fu11-5T also grew fermentatively on some pentoses, hexoses and disaccharides and soluble starch. Succinic acid was the major end product from d-glucose. Phylogenetic analysis based on the 16S rRNA gene sequence revealed that strain Fu11-5T was affiliated with the order Bacteroidales , and its nearest neighbours were members of the genera Meniscus , Prolixibacter , Sunxiuqinia , Mangrovibacterium and Draconibacterium, with 87–91 % sequence similarity. Cell morphology, optimum growth temperature and utilization of sugars of strain Fu11-5T distinguished the strain from phylogenetically related bacteria. On the basis of its phenotypic features and phylogenetic position, a novel genus and species are proposed to accommodate strain Fu11-5T, with the name Mariniphaga anaerophila gen. nov., sp. nov. The type strain of Mariniphaga anaerophila is strain Fu11-5T ( = JCM 18693T = NBRC 109408T = DSM 26910T). We also propose to combine the family Draconibacteriaceae into the family Prolixibacteraceae as a later heterotypic synonym and to place the distinct sublineage of the genus Marinifilum in the family Marinifilaceae fam. nov.


2013 ◽  
Vol 63 (Pt_2) ◽  
pp. 761-765 ◽  
Author(s):  
Yuriko Higashioka ◽  
Hisaya Kojima ◽  
Miho Watanabe ◽  
Manabu Fukui

A novel sulfate-reducing bacterium, strain S28bFT, was isolated from tidal flat sediment from Tokyo Bay, Japan. Cells of strain S28bFT were rod-shaped (0.5–0.6×1.7–3.8 µm), motile and Gram-stain-negative. For growth, the optimum pH was pH 6.8–7.3 and the optimum temperature was 34–42 °C. Strain S28bFT used sulfate and thiosulfate as electron acceptors, but not nitrate. The G+C content of the genomic DNA was 56.6 mol%. The fatty acid profile of strain S28bFT was characterized by the presence of anteiso-C15 : 0 and C16 : 0 as the major components. Phylogenetic analyses based on genes for 16S rRNA, the alpha subunit of dissimilatory sulfite reductase (dsrA) and adenosine-5′-phosphosulfate reductase (aprA) revealed that the isolated strain belonged to the class Deltaproteobacteria . Its closest relative was Desulfosarcina cetonica DSM 7267T with a 16S rRNA gene sequence similarity of 93.3 %. Two other strains, S28OL1 and S28OL2 were also isolated from the same sediment. These strains were closely related to S28bFT with 16S rRNA gene sequence similarities of 99 %, and the same physiological characteristics were shared with strain S28bFT. On the basis of phylogenetic and phenotypic characterization, a novel species in a new genus, Desulfatitalea tepidiphila gen. nov., sp. nov., is proposed to accommodate the strains obtained in this study. The type strain is S28bFT ( = NBRC 107166T = DSM 23472T).


2018 ◽  
Vol 68 (4) ◽  
pp. 1350-1355 ◽  
Author(s):  
Sooyeon Park ◽  
Jeehyun Choi ◽  
Sung-Min Won ◽  
Ji-Min Park ◽  
Jung-Hoon Yoon

2005 ◽  
Vol 55 (6) ◽  
pp. 2519-2523 ◽  
Author(s):  
Yoon-Dong Park ◽  
Keun Sik Baik ◽  
Hana Yi ◽  
Kyung Sook Bae ◽  
Jongsik Chun

A Gram-negative, motile, strictly aerobic, violet-pigment-producing bacterium, designated strain FR1199T, was isolated from tidal flat sediment of Byunsan, South Korea. Phylogenetic analysis of the 16S rRNA gene sequence revealed that strain FR1199T represents a distinct line of descent within the genus Pseudoalteromonas. The phenotypic features of strain FR1199T were similar to those of Pseudoalteromonas phenolica and Pseudoalteromonas luteoviolacea, but several physiological and chemotaxonomical properties readily distinguished strain FR1199T from these species. Major fatty acids were straight-chain saturated (C16 : 0) and monounsaturated C18 : 1 ω7c fatty acids. The DNA G+C content was 39 mol%. On the basis of polyphasic evidence, it is concluded that the isolate represents a novel species within the genus Pseudoalteromonas, for which the name Pseudoalteromonas byunsanensis sp. nov. is proposed. The type strain is FR1199T (=JCM 12483T=KCTC 12274T).


2007 ◽  
Vol 50 (6) ◽  
pp. 812-820 ◽  
Author(s):  
DongQi Wang ◽  
ZhenLou Chen ◽  
ShiYuan Xu ◽  
LiangJun Da ◽  
ChunJuan Bi ◽  
...  

Author(s):  
Yang Liu ◽  
Tao Pei ◽  
Juan Du ◽  
Meijie Chao ◽  
Ming-Rong Deng ◽  
...  

A novel Gram-stain-negative, facultatively anaerobic, rod-shaped and non-motile bacterial strain, designated as 4C16AT, was isolated from a tidal flat sediment and characterized by using a polyphasic taxonomic approach. Strain 4C16AT was found to grow at 10–40 °C (optimum, 28 °C), at pH 5.0–10.0 (optimum, pH 6.0–7.0) and in 0–6 % (w/v) NaCl (optimum, 1 %). Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain 4C16AT fell into the genus Roseibium , and shared the highest identity of 98.9 % with the closest type strain Roseibium suaedae KACC 13772T and less than 98.0 % identity with other type strains of recognized species within this genus. The phylogenomic analysis indicated that strain 4C16AT formed an independent branch within this genus. The 28.6 % digital DNA–DNA hybridization estimate and 85.0 % average nucleotide identity between strains 4C16AT and R. suaedae KACC 13772T were the highest, but still far below their respective threshold for species definition, implying that strain 4C16AT should represent a novel genospecies. The predominant cellular fatty acid was summed feature 8; the polar lipids were diphosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol and phosphatidylmonomethylethanolamine; the respiratory quinones were Q-9 and Q-10. The genomic DNA G+C content was 59.8mol %. Based on phylogenetic analyses and phenotypic and chemotaxonomic characteristics, strain 4C16AT is concluded to represent a novel species of the genus Roseibium , for which the name Roseibium litorale sp. nov. is proposed. The type strain of the species is 4C16AT (=GDMCC 1.1932T=KACC 22078T). We also propose the reclassification of Labrenzia polysiphoniae as Roseibium polysiphoniae comb. nov. and ‘Labrenzia callyspongiae’ as Roseibium callyspongiae sp. nov.


Sign in / Sign up

Export Citation Format

Share Document