Effect of donor and acceptor position on light emitting performances of thermally activated delayed fluorescent emitters with two bicarbazole donors and two cyano acceptors

2017 ◽  
Vol 227 ◽  
pp. 37-42 ◽  
Author(s):  
Hyeong Min Kim ◽  
Jeong Min Choi ◽  
Jun Yeob Lee

2021 ◽  
Author(s):  
A. Lennart Schleper ◽  
Kenichi Goushi ◽  
Christoph Bannwarth ◽  
Bastian Haehnle ◽  
Philipp Welscher ◽  
...  

Rapid reverse intersystem crossing and high color purity are vital characteristics of emitters with thermally activated delayed fluorescence in opto-electronic devices. We present a new approach, called “hot exciplexes” that enables access to both attributes at the same time. Hot exciplexes are produced by coupling facing donor and acceptor moieties to an anthracene bridge, yielding an exciplex with large T1 to T2 spacing. The hot exciplex model is investigated using optical spec-troscopy and quantum chemical simulations. Reverse intersystem crossing is found to occur preferentially from the T3 to the S1 state within only a few nanoseconds. Application and practi-cality of the model are shown by fabrication of organic light-emitting diodes with up to 32 % hot exciplex contribution and low efficiency roll-off.



Materials ◽  
2019 ◽  
Vol 12 (16) ◽  
pp. 2646 ◽  
Author(s):  
Ramanaskanda Braveenth ◽  
Kyu Yun Chai

High-efficiency thermally activated delayed fluorescence (TADF) is leading the third-generation technology of organic light-emitting diodes (OLEDs). TADF emitters are designed and synthesized using inexpensive organic donor and acceptor derivatives. TADF emitters are a potential candidate for next-generation display technology when compared with metal-complex-based phosphorescent dopants. Many studies are being conducted to enhance the external quantum efficiencies (EQEs) and photoluminescent quantum yield of green TADF devices. Blue TADF reached an EQE of over 35% with the support of suitable donor and acceptor moieties based on a suitable molecular design. The efficiencies of green TADF emitters can be improved when an appropriate molecular design is applied with an efficient device structure. The triazine acceptor has been identified as a worthy building block for green TADF emitters. Hence, we present here a review of triazine with various donor molecules and their device performances. This will help to design more suitable and efficient green TADF emitters for OLEDs.



Author(s):  
yoshimasa wada ◽  
Hiromichi Nakagawa ◽  
Soma Matsumoto ◽  
Yasuaki Wakisaka ◽  
Hironori Kaji

Reverse intersystem crossing (RISC), originally considered forbidden in purely organic materials, has been recently enabled by minimizing the energy gap between the lowest singlet excited state (S<sub>1</sub>) and lowest triplet state (T<sub>1</sub>) in thermally activated delayed fluorescence (TADF) systems. However, direct spin-inversion between S<sub>1</sub> and T<sub>1</sub> is still inefficient when both states are of the same charge transfer (CT) nature (i.e. <sup>1</sup>CT and <sup>3</sup>CT, respectively). Intervention of locally excited triplet states (<sup>3</sup>LE) between <sup>1</sup>CT and <sup>3</sup>CT is expected to trigger fast spin-flip. Here, we report on the systematic-design of the ideal TADF molecules with near-degenerate <sup>1</sup>CT, <sup>3</sup>CT and <sup>3</sup>LE states by controlling the through-space distance between the donor and acceptor segments in a molecule with tilted intersegment angles. The new system realizes very fast RISC with a rate constant (<i>k</i><sub>RISC</sub>) of 1.2×10<sup>7</sup> s<sup>−1</sup>. The large <i>k</i><sub>RISC</sub> of the emitter resulted in great device performance in the applications to blue TADF assisted fluorescence organic light-emitting diodes (OLEDs) as well as TADF-emitter OLEDs.<br>



2021 ◽  
Vol 9 ◽  
Author(s):  
Kun-Han Lin ◽  
Gert-Jan A. H. Wetzelaer ◽  
Paul W. M. Blom ◽  
Denis Andrienko

Thermally-activated delayed fluorescence (TADF) is a concept which helps to harvest triplet excitations, boosting the efficiency of an organic light-emitting diode. TADF can be observed in molecules with spatially separated donor and acceptor groups with a reduced triplet-singlet energy level splitting. TADF materials with balanced electron and hole transport are attractive for realizing efficient single-layer organic light emitting diodes, greatly simplifying their manufacturing and improving their stability. Our goal here is to computationally screen such materials and provide a comprehensive database of compounds with a range of emission wavelengths, ionization energies, and electron affinities.



2021 ◽  
Vol 12 (1) ◽  
Author(s):  
A. Lennart Schleper ◽  
Kenichi Goushi ◽  
Christoph Bannwarth ◽  
Bastian Haehnle ◽  
Philipp J. Welscher ◽  
...  

AbstractFast emission and high color purity are essential characteristics of modern opto-electronic devices, such as organic light emitting diodes (OLEDs). These properties are currently not met by the latest generation of thermally activated delayed fluorescence (TADF) emitters. Here, we present an approach, called “hot exciplexes” that enables access to both attributes at the same time. Hot exciplexes are produced by coupling facing donor and acceptor moieties to an anthracene bridge, yielding an exciplex with large T1 to T2 spacing. The hot exciplex model is investigated using optical spectroscopy and quantum chemical simulations. Reverse intersystem crossing is found to occur preferentially from the T3 to the S1 state within only a few nanoseconds. Application and practicality of the model are shown by fabrication of organic light-emitting diodes with up to 32 % hot exciplex contribution and low efficiency roll-off.



2021 ◽  
Author(s):  
A. Lennart Schleper ◽  
Kenichi Goushi ◽  
Christoph Bannwarth ◽  
Bastian Haehnle ◽  
Philipp Welscher ◽  
...  

Rapid reverse intersystem crossing and high color purity are vital characteristics of emitters with thermally activated delayed fluorescence in opto-electronic devices. We present a new approach, called “hot exciplexes” that enables access to both attributes at the same time. Hot exciplexes are produced by coupling facing donor and acceptor moieties to an anthracene bridge, yielding an exciplex with large T1 to T2 spacing. The hot exciplex model is investigated using optical spec-troscopy and quantum chemical simulations. Reverse intersystem crossing is found to occur preferentially from the T3 to the S1 state within only a few nanoseconds. Application and practi-cality of the model are shown by fabrication of organic light-emitting diodes with up to 32 % hot exciplex contribution and low efficiency roll-off.



Author(s):  
yoshimasa wada ◽  
Hiromichi Nakagawa ◽  
Soma Matsumoto ◽  
Yasuaki Wakisaka ◽  
Hironori Kaji

Reverse intersystem crossing (RISC), originally considered forbidden in purely organic materials, has been recently enabled by minimizing the energy gap between the lowest singlet excited state (S<sub>1</sub>) and lowest triplet state (T<sub>1</sub>) in thermally activated delayed fluorescence (TADF) systems. However, direct spin-inversion between S<sub>1</sub> and T<sub>1</sub> is still inefficient when both states are of the same charge transfer (CT) nature (i.e. <sup>1</sup>CT and <sup>3</sup>CT, respectively). Intervention of locally excited triplet states (<sup>3</sup>LE) between <sup>1</sup>CT and <sup>3</sup>CT is expected to trigger fast spin-flip. Here, we report on the systematic-design of the ideal TADF molecules with near-degenerate <sup>1</sup>CT, <sup>3</sup>CT and <sup>3</sup>LE states by controlling the through-space distance between the donor and acceptor segments in a molecule with tilted intersegment angles. The new system realizes very fast RISC with a rate constant (<i>k</i><sub>RISC</sub>) of 1.2×10<sup>7</sup> s<sup>−1</sup>. The large <i>k</i><sub>RISC</sub> of the emitter resulted in great device performance in the applications to blue TADF assisted fluorescence organic light-emitting diodes (OLEDs) as well as TADF-emitter OLEDs.<br>



Author(s):  
Gloria Hong ◽  
Changfeng Si ◽  
Abhishek Kumar Gupta ◽  
Claudia Bizzarri ◽  
Martin Nieger ◽  
...  

Purely organic thermally activated delayed fluorescence (TADF) emitting materials for organic light-emitting diodes (OLEDs) enable a facile method to modulate the emission color through judicious choice of donor and acceptor...



Author(s):  
Shantaram Kothavale ◽  
Won Jae Chung ◽  
Jun Yeob Lee

Molecular design approach for the simultaneous achievement of high efficiency and long lifetime in the long wavelength region.



Sign in / Sign up

Export Citation Format

Share Document