scholarly journals Molecular Design Realizing Very Fast Reverse Intersystem Crossing in Purely Organic Emitter

Author(s):  
yoshimasa wada ◽  
Hiromichi Nakagawa ◽  
Soma Matsumoto ◽  
Yasuaki Wakisaka ◽  
Hironori Kaji

Reverse intersystem crossing (RISC), originally considered forbidden in purely organic materials, has been recently enabled by minimizing the energy gap between the lowest singlet excited state (S<sub>1</sub>) and lowest triplet state (T<sub>1</sub>) in thermally activated delayed fluorescence (TADF) systems. However, direct spin-inversion between S<sub>1</sub> and T<sub>1</sub> is still inefficient when both states are of the same charge transfer (CT) nature (i.e. <sup>1</sup>CT and <sup>3</sup>CT, respectively). Intervention of locally excited triplet states (<sup>3</sup>LE) between <sup>1</sup>CT and <sup>3</sup>CT is expected to trigger fast spin-flip. Here, we report on the systematic-design of the ideal TADF molecules with near-degenerate <sup>1</sup>CT, <sup>3</sup>CT and <sup>3</sup>LE states by controlling the through-space distance between the donor and acceptor segments in a molecule with tilted intersegment angles. The new system realizes very fast RISC with a rate constant (<i>k</i><sub>RISC</sub>) of 1.2×10<sup>7</sup> s<sup>−1</sup>. The large <i>k</i><sub>RISC</sub> of the emitter resulted in great device performance in the applications to blue TADF assisted fluorescence organic light-emitting diodes (OLEDs) as well as TADF-emitter OLEDs.<br>

Author(s):  
yoshimasa wada ◽  
Hiromichi Nakagawa ◽  
Soma Matsumoto ◽  
Yasuaki Wakisaka ◽  
Hironori Kaji

Reverse intersystem crossing (RISC), originally considered forbidden in purely organic materials, has been recently enabled by minimizing the energy gap between the lowest singlet excited state (S<sub>1</sub>) and lowest triplet state (T<sub>1</sub>) in thermally activated delayed fluorescence (TADF) systems. However, direct spin-inversion between S<sub>1</sub> and T<sub>1</sub> is still inefficient when both states are of the same charge transfer (CT) nature (i.e. <sup>1</sup>CT and <sup>3</sup>CT, respectively). Intervention of locally excited triplet states (<sup>3</sup>LE) between <sup>1</sup>CT and <sup>3</sup>CT is expected to trigger fast spin-flip. Here, we report on the systematic-design of the ideal TADF molecules with near-degenerate <sup>1</sup>CT, <sup>3</sup>CT and <sup>3</sup>LE states by controlling the through-space distance between the donor and acceptor segments in a molecule with tilted intersegment angles. The new system realizes very fast RISC with a rate constant (<i>k</i><sub>RISC</sub>) of 1.2×10<sup>7</sup> s<sup>−1</sup>. The large <i>k</i><sub>RISC</sub> of the emitter resulted in great device performance in the applications to blue TADF assisted fluorescence organic light-emitting diodes (OLEDs) as well as TADF-emitter OLEDs.<br>


2021 ◽  
Author(s):  
A. Lennart Schleper ◽  
Kenichi Goushi ◽  
Christoph Bannwarth ◽  
Bastian Haehnle ◽  
Philipp Welscher ◽  
...  

Rapid reverse intersystem crossing and high color purity are vital characteristics of emitters with thermally activated delayed fluorescence in opto-electronic devices. We present a new approach, called “hot exciplexes” that enables access to both attributes at the same time. Hot exciplexes are produced by coupling facing donor and acceptor moieties to an anthracene bridge, yielding an exciplex with large T1 to T2 spacing. The hot exciplex model is investigated using optical spec-troscopy and quantum chemical simulations. Reverse intersystem crossing is found to occur preferentially from the T3 to the S1 state within only a few nanoseconds. Application and practi-cality of the model are shown by fabrication of organic light-emitting diodes with up to 32 % hot exciplex contribution and low efficiency roll-off.


Materials ◽  
2019 ◽  
Vol 12 (16) ◽  
pp. 2646 ◽  
Author(s):  
Ramanaskanda Braveenth ◽  
Kyu Yun Chai

High-efficiency thermally activated delayed fluorescence (TADF) is leading the third-generation technology of organic light-emitting diodes (OLEDs). TADF emitters are designed and synthesized using inexpensive organic donor and acceptor derivatives. TADF emitters are a potential candidate for next-generation display technology when compared with metal-complex-based phosphorescent dopants. Many studies are being conducted to enhance the external quantum efficiencies (EQEs) and photoluminescent quantum yield of green TADF devices. Blue TADF reached an EQE of over 35% with the support of suitable donor and acceptor moieties based on a suitable molecular design. The efficiencies of green TADF emitters can be improved when an appropriate molecular design is applied with an efficient device structure. The triazine acceptor has been identified as a worthy building block for green TADF emitters. Hence, we present here a review of triazine with various donor molecules and their device performances. This will help to design more suitable and efficient green TADF emitters for OLEDs.


Author(s):  
Fernando B. Dias

The kinetics of thermally activated delayed fluorescence (TADF) is investigated in dilute solutions of organic materials with application in blue light-emitting diodes (OLEDs). A method to accurately determine the energy barrier (Δ E a ) and the rate of reverse intersystem crossing ( k Risc ) in TADF emitters is developed, and applied to investigate the triplet-harvesting mechanism in blue-emitting materials with large singlet–triplet energy gap (Δ E ST ). In these materials, triplet–triplet annihilation (TTA) is the dominant mechanism for triplet harvesting; however, above a threshold temperature TADF is able to compete with TTA and give enhanced delayed fluorescence. Evidence is obtained for the interplay between the TTA and the TADF mechanisms in these materials.


2021 ◽  
Author(s):  
A. Lennart Schleper ◽  
Kenichi Goushi ◽  
Christoph Bannwarth ◽  
Bastian Haehnle ◽  
Philipp Welscher ◽  
...  

Rapid reverse intersystem crossing and high color purity are vital characteristics of emitters with thermally activated delayed fluorescence in opto-electronic devices. We present a new approach, called “hot exciplexes” that enables access to both attributes at the same time. Hot exciplexes are produced by coupling facing donor and acceptor moieties to an anthracene bridge, yielding an exciplex with large T1 to T2 spacing. The hot exciplex model is investigated using optical spec-troscopy and quantum chemical simulations. Reverse intersystem crossing is found to occur preferentially from the T3 to the S1 state within only a few nanoseconds. Application and practi-cality of the model are shown by fabrication of organic light-emitting diodes with up to 32 % hot exciplex contribution and low efficiency roll-off.


2021 ◽  
Author(s):  
Cathay Chai Au-Yeung ◽  
Lok-Kwan Li ◽  
Man-Chung Tang ◽  
Shiu-Lun Lai ◽  
Wai-Lung Cheung ◽  
...  

We report the design of a new class of fused heterocyclic alkynyl ligand-containing gold(iii) complexes, which shows tunable emission colors spanning yellow to red region and exhibits thermally activated delayed fluorescence (TADF) properties.


2018 ◽  
Vol 14 ◽  
pp. 282-308 ◽  
Author(s):  
Thanh-Tuân Bui ◽  
Fabrice Goubard ◽  
Malika Ibrahim-Ouali ◽  
Didier Gigmes ◽  
Frédéric Dumur

The design of highly emissive and stable blue emitters for organic light emitting diodes (OLEDs) is still a challenge, justifying the intense research activity of the scientific community in this field. Recently, a great deal of interest has been devoted to the elaboration of emitters exhibiting a thermally activated delayed fluorescence (TADF). By a specific molecular design consisting into a minimal overlap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) due to a spatial separation of the electron-donating and the electron-releasing parts, luminescent materials exhibiting small S1–T1 energy splitting could be obtained, enabling to thermally upconvert the electrons from the triplet to the singlet excited states by reverse intersystem crossing (RISC). By harvesting both singlet and triplet excitons for light emission, OLEDs competing and sometimes overcoming the performance of phosphorescence-based OLEDs could be fabricated, justifying the interest for this new family of materials massively popularized by Chihaya Adachi since 2012. In this review, we proposed to focus on the recent advances in the molecular design of blue TADF emitters for OLEDs during the last few years.


2018 ◽  
Vol 6 (20) ◽  
pp. 5363-5368 ◽  
Author(s):  
Ji Han Kim ◽  
Dong Ryun Lee ◽  
Si Hyun Han ◽  
Jun Yeob Lee

Highly efficient red thermally activated delayed fluorescence organic light-emitting diodes were developed using a reverse intersystem crossing activating host derived from phenylcarbazole and pyridofuropyridine.


Sign in / Sign up

Export Citation Format

Share Document