The obstacle avoidance motion planning problem for autonomous vehicles: A low-demanding receding horizon control scheme

2015 ◽  
Vol 77 ◽  
pp. 1-10 ◽  
Author(s):  
Giuseppe Franzè ◽  
Walter Lucia
PAMM ◽  
2017 ◽  
Vol 17 (1) ◽  
pp. 799-800 ◽  
Author(s):  
Victoria Grushkovskaya ◽  
Alexander Zuyev

2013 ◽  
Vol 281 ◽  
pp. 3-9 ◽  
Author(s):  
Sheng Qing Yang ◽  
Jian Qiao Yu ◽  
Si Yu Zhang

Motivated by recent research on cooperative search of autonomous vehicles, a new approach for searching unknown targets is introduced in this paper. The unknown targets are assumed to be static. ZAMBONI search in spiral curve form is considered to implement the cooperation of vehicles. Algorithms that based on geometry underlying search process are discussed to make vehicles act in the spiral curves form. The receding horizon control is introduced for obstacle avoidance which can result in a feasible trajectory during the search process. Simulations of the hybrid method based on ZAMBONI search and receding horizon control show promising results.


Author(s):  
Xin-Sheng Ge ◽  
Li-Qun Chen

The motion planning problem of a nonholonomic multibody system is investigated. Nonholonomicity arises in many mechanical systems subject to nonintegrable velocity constraints or nonintegrable conservation laws. When the total angular momentum is zero, the control problem of system can be converted to the motion planning problem for a driftless control system. In this paper, we propose an optimal control approach for nonholonomic motion planning. The genetic algorithm is used to optimize the performance of motion planning to connect the initial and final configurations and to generate a feasible trajectory for a nonholonomic system. The feasible trajectory and its control inputs are searched through a genetic algorithm. The effectiveness of the genetic algorithm is demonstrated by numerical simulation.


Robotica ◽  
1994 ◽  
Vol 12 (4) ◽  
pp. 323-333 ◽  
Author(s):  
R.H.T. Chan ◽  
P.K.S. Tam ◽  
D.N.K. Leung

SUMMARYThis paper presents a new neural networks-based method to solve the motion planning problem, i.e. to construct a collision-free path for a moving object among fixed obstacles. Our ‘navigator’ basically consists of two neural networks: The first one is a modified feed-forward neural network, which is used to determine the configuration space; the moving object is modelled as a configuration point in the configuration space. The second neural network is a modified bidirectional associative memory, which is used to find a path for the configuration point through the configuration space while avoiding the configuration obstacles. The basic processing unit of the neural networks may be constructed using logic gates, including AND gates, OR gates, NOT gate and flip flops. Examples of efficient solutions to difficult motion planning problems using our proposed techniques are presented.


Author(s):  
Tony Dear ◽  
Scott David Kelly ◽  
Matthew Travers ◽  
Howie Choset

Mechanical systems often exhibit physical symmetries in their configuration variables, allowing for significant reduction of their mathematical complexity arising from characteristics such as underactuation and nonlinearity. In this paper, we exploit the geometric structure of such systems to explore the following motion planning problem: given a desired trajectory in the workspace, can we explicitly solve for the appropriate inputs to follow it? We appeal to results on differential flatness from the nonlinear control literature to develop a general motion planning formulation for systems with symmetries and constraints, which also applies to both fully constrained and unconstrained kinematic systems. We conclude by demonstrating the utility of our results on several canonical mechanical systems found in the locomotion literature.


Sign in / Sign up

Export Citation Format

Share Document