scholarly journals Characterization by detectability inequality for periodic stabilization of linear time-periodic evolution systems

2021 ◽  
Vol 149 ◽  
pp. 104871
Author(s):  
Yashan Xu
2020 ◽  
Vol 53 (2) ◽  
pp. 1237-1242
Author(s):  
Mingzhou Yin ◽  
Andrea Iannelli ◽  
Mohammad Khosravi ◽  
Anilkumar Parsi ◽  
Roy S. Smith

Author(s):  
Arindam Chakraborty ◽  
Jayati Dey

The guaranteed simultaneous stabilization of two linear time-invariant plants is achieved by continuous-time periodic controller with high controller frequency. Simultaneous stabilization is accomplished by means of pole-placement along with robust zero error tracking to either of two plants. The present work also proposes an efficient design methodology for the same. The periodic controller designed and synthesized for realizable bounded control input with the proposed methodology is always possible to implement with guaranteed simultaneous stabilization for two plants. Simulation and experimental results establish the veracity of the claim.


Author(s):  
Hamidreza Kazemi ◽  
Mohamed Y. Nada ◽  
Tarek Mealy ◽  
Ahmed F. Abdelshafy ◽  
Filippo Capolino

1989 ◽  
Vol 34 (2) ◽  
pp. 218-220 ◽  
Author(s):  
T.P. Svobodny ◽  
D.L. Russell

Author(s):  
Matthew S. Allen

A variety of systems can be faithfully modeled as linear with coefficients that vary periodically with time or Linear Time-Periodic (LTP). Examples include anisotropic rotorbearing systems, wind turbines, satellite systems, etc… A number of powerful techniques have been presented in the past few decades, so that one might expect to model or control an LTP system with relative ease compared to time varying systems in general. However, few, if any, methods exist for experimentally characterizing LTP systems. This work seeks to produce a set of tools that can be used to characterize LTP systems completely through experiment. While such an approach is commonplace for LTI systems, all current methods for time varying systems require either that the system parameters vary slowly with time or else simply identify a few parameters of a pre-defined model to response data. A previous work presented two methods by which system identification techniques for linear time invariant (LTI) systems could be used to identify a response model for an LTP system from free response data. One of these allows the system’s model order to be determined exactly as if the system were linear time-invariant. This work presents a means whereby the response model identified in the previous work can be used to generate the full state transition matrix and the underlying time varying state matrix from an identified LTP response model and illustrates the entire system-identification process using simulated response data for a Jeffcott rotor in anisotropic bearings.


Sign in / Sign up

Export Citation Format

Share Document