Isogeometric analysis of stress intensity factors for curved crack problems

2015 ◽  
Vol 75 ◽  
pp. 89-103 ◽  
Author(s):  
Myung-Jin Choi ◽  
Seonho Cho

For a non-pathological bimaterial in which an interface crack displays no oscillatory behaviour, it is observed that, apart possibly from the stress intensity factors, the structure of the near-tip field in each of the two blocks is independent of the elastic moduli of the other block. Collinear interface cracks are analysed under this non-oscillatory condition, and a simple rule is formulated that allows one to construct the complete solutions from mode III solutions in an isotropic, homogeneous medium. The general interfacial crack-tip field is found to consist of a two-dimensional oscillatory singularity and a one-dimensional square root singularity. A complex and a real stress intensity factors are proposed to scale the two singularities respectively. Owing to anisotropy, a peculiar fact is that the complex stress intensity factor scaling the oscillatory fields, however defined, does not recover the classical stress intensity factors as the bimaterial degenerates to be non-pathological. Collinear crack problems are also formulated in this context, and a strikingly simple mathematical structure is identified. Interactive solutions for singularity-interface and singularity interface-crack are obtained. The general results are specialized to decoupled antiplane and in-plane deformations. For this important case, it is found that if a material pair is non-pathological for one set of relative orientations of the interface and the two solids, it is non-pathological for any set of orientations. For bonded orthotropic materials, an intuitive choice of the principal measures of elastic anisotropy and dissimilarity is rationalized. A complex-variable representation is presented for a class of degenerate orthotropic materials. Throughout the paper, the equivalence of the Lekhnitskii and Stroh formalisms is emphasized. The article concludes with a formal statement of interfacial fracture mechanics for anisotropic solids.


Author(s):  
George T. Sha

The use of the stiffness derivative technique coupled with “quarter-point” singular crack-tip elements permits very efficient finite element determination of both stress intensity factors and nodal weight functions. Two-dimensional results are presented in this paper to demonstrate that accurate stress intensity factors and nodal weight functions can be obtained from relatively coarse mesh models by coupling the stiffness derivative technique with singular elements. The principle of linear superposition implies that the calculation of stress intensity factors and nodal weight functions with crack-face loading, σ(rs), is equivalent to loading the cracked body with remote loads, which produces σ(rs) on the prospective crack face in the absence of crack. The verification of this equivalency is made numerically, using the virtual crack extension technique. Load independent nodal weight functions for two-dimensional crack geometry is demonstrated on various remote and crack-face loading conditions. The efficient calculation of stress intensity factors with the use of the “uncracked” stress field and the crack-face nodal weight functions is also illustrated. In order to facilitate the utilization of the discretized crack-face nodal weight functions, an approach was developed for two-dimensional crack problems. Approximations of the crack-face nodal weight functions as a function of distance, (rs), from crack-tip has been successfully demonstrated by the following equation: h a , r s = A a √ r s + B a + C a √ r s + D a r s Coefficients A(a), B(a), C(a) and D(a), which are functions of crack length (a), can be obtained by least-squares fitting procedures. The crack-face nodal weight functions for a new crack geometry can be approximated using cubic spline interpolation of the coefficients A, B, C and D of varying crack lengths. This approach, demonstrated on the calculation of stress intensity factors for single edge crack geometry, resulted in a total loss of accuracy of less than 1%.


1986 ◽  
Vol 53 (4) ◽  
pp. 774-778 ◽  
Author(s):  
Huajian Gao ◽  
James R. Rice

Recent work (Rice, 1985a) has presented the calculations of the first order variation in an elastic displacement field associated with arbitrary incremental planar advance of the location of the front of a half-plane crack in a loaded elastic full space. That work also indicated the relation of such calculations to a three-dimensional weight function theory for crack analysis and derived an expression for the distribution of the tensile mode stress intensity factor along a slightly curved crack front, to first order accuracy in the deviation of the crack front location from a reference straight line. Here we extend the results on stress intensity factors to the shear modes, solving to similar first order accuracy for the in-plane (Mode 2) and antiplane (Mode 3) shear stress intensity factors along a slightly curved crack front. Implications of results for the configurational stability of a straight crack front are discussed. It is also shown that the concept of line tension, while qualitatively useful in characterizing the crack extension force (energy release rate) distribution exerted on a tough heterogeneity along a fracture path as the crack front begins to curve around it, does not agree with the exact first order effect that is derived here.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Tiantang Yu ◽  
Yongling Lai ◽  
Shuohui Yin

The extended isogeometric analysis (X-IGA) is the combination of the extended finite element method (X-FEM) and the isogeometric analysis (IGA), so the X-IGA possesses the advantages of both methods. In this paper, the X-IGA is extended to investigate the dynamic stress intensity factors of cracked isotropic/orthotropic media under impact loading. For this purpose, a corresponding dynamic X-IGA model is developed, the Newmark time integration scheme is used to achieve a dynamic response, and the dynamic stress intensity factors are evaluated through the contour interaction integral technique. Numerical simulations show that the X-IGA results agree with other available reference solutions, and accurate results can be obtained by using the X-IGA with a relatively coarse mesh.


Sign in / Sign up

Export Citation Format

Share Document