scholarly journals Method development and laboratory intercomparison of an RP-HPLC-UV method for energetic chemicals in marine tissues

Talanta ◽  
2019 ◽  
Vol 198 ◽  
pp. 284-294 ◽  
Author(s):  
Harry D. Craig ◽  
Thomas F. Jenkins ◽  
Mitch T. Johnson ◽  
Dana M. Walker ◽  
David E. Dobb ◽  
...  
2012 ◽  
Vol 2 (2) ◽  
pp. 364-367 ◽  
Author(s):  
Saida Naik Dheeravath ◽  
◽  
Kasani Ramadevi ◽  
Zilla Saraswathi ◽  
Dheeravath Maniklal ◽  
...  

Author(s):  
Navya Sree K S ◽  
Swapnil J Dengale ◽  
Srinivas Mutalik ◽  
Krishnamurthy Bhat

Abstract Background Dronedarone HCl is an anti-arrhythmic drug indicated for atrial fibrillation. Dronedarone HCl(DRN) has a low solubility of 2 µg/mL and 4% bioavailability, thus it is formulated as co-amorphous system to enhance its solubility by using Quercetin(QCT) as coformer. Literature lacks a sensitive, accurate and economic method for simultaneous quantification of DRN and QCT in formulation. Objective To develop a RP-HPLC method for simultaneous estimation of DRN and QCT in DRN-QCT co-amorphous system. Method Co-amorphous system was prepared using solvent evaporation technique using DRN and QCT in 1:1 molar ratio. The separation was achieved on Purospher® STAR C18 (250 mm × 4.6 mm × 5 μm) column with mobile phase comprising of Acetonitrile and 25 mM phosphate buffer pH 3.6 (60:40, % v/v). Results DRN and QCT retained at 6.7 and 3.5 min, respectively. For both molecules, method was developed with a wide linearity range of 0.2–500 µg/mL. LOD for DRN was found to be 0.0013 and 0.0026 µg/mL for QCT. Also, LOQ for DRN was found to be 0.0041 and 0.0078 µg/mL for QCT. Conclusion Method was validated as per ICHQ2R1 guidelines for linearity, precision, accuracy, and robustness. The method was used in simultaneous quantification of DRN and QCT in co-amorphous samples. Highlights The method developed was used for the analysis of content uniformity and solubility samples of co-amorphous system, where the method was able to successfully quantify DRN and QCT. Low detection and quantification limits contribute to sensitivity of the method and wide linearity range assures the robust and precise quantification of molecules.


Author(s):  
G.M. Kadam ◽  
A.L. Puyad ◽  
T.M. Kalyankar

A new, economical, simple, accurate, and precise RP-HPLC method was developed for simultaneous assay and content uniformity determination of Sacubitril and Valsartan in bulk and pharmaceutical dosage form. The separation of Sacubitril and Valsartan was achieved within 6 minutes on Phenomenex Luna C18 250 mm x 4.6mm and 5µm Particle Size, column using Acetonitrile: Methanol: Water (30:55:15% v/v/v) as the mobile phase. Detection was carried out at 250 nm wavelength. The retention time of Sacubitril and Valsartan was found to be 2.361 and 3.304 min, respectively. The validation of the developed method was performed in terms of specificity, accuracy, precision, linearity, the limit of detection, the limit of quantification as mentioned in International Conference on Harmonization (ICH) guidelines. The method showed adequate sensitivity concerning linearity, accuracy, and precision over the range 12-36 μg/ml and 13-39 μg/ml for Sacubitril and Valsartan, respectively. The percentage recoveries obtained for Sacubitril and Valsartan were found to be in the range of 98.00 – 102.00 %. The proposed method is suitable for use in quality-control laboratories for quantitative analysis.


INDIAN DRUGS ◽  
2021 ◽  
Vol 57 (10) ◽  
pp. 47-57

An isocratic Reversed-Phase High Performance Liquid Chromatography method has been developed for rapid and simultaneous separation and estimation of two antibiotics, namely, nitazoxanide and ofloxacin, in human plasma. Separation was carried out on Altima C8 (150 x 4.6 mm, 5µ) column using a mobile phase of 0.1% ortho phosphoric acid: acetonitrile (50:50, V/V) at 260 nm. The retention time of nitazoxanide and ofloxacin was noted to be 4.850 and 7.949 min, respectively. The average % recovery for nitazoxanide and ofloxacin were 98.012 % and 94.176 %, respectively and reproducibility was found to be satisfactory. The linearity was investigated in the concentration range of 0.02-2 µg/ml (r2=0.9996) for nitazoxanide and 0.008-0.8 µg/ml (r2=0.9998) for ofloxacin. The lower limits of quantification were 0.0196 µg/ml and 0.0079 µg/ml for nitazoxanide and ofloxacin, respectively, which reach the level of both drugs possibly found in human plasma. The proposed method can be applied for etermination of nitazoxanide and ofloxacin from dosage forms during pharmacokinetic study.


Sign in / Sign up

Export Citation Format

Share Document