Deterministic approximation algorithm for submodular maximization subject to a matroid constraint

Author(s):  
Xin Sun ◽  
Dachuan Xu ◽  
Longkun Guo ◽  
Min Li
Author(s):  
Zhicheng Liu ◽  
Hong Chang ◽  
Ran Ma ◽  
Donglei Du ◽  
Xiaoyan Zhang

Abstract We consider a two-stage submodular maximization problem subject to a cardinality constraint and k matroid constraints, where the objective function is the expected difference of a nonnegative monotone submodular function and a nonnegative monotone modular function. We give two bi-factor approximation algorithms for this problem. The first is a deterministic $\left( {{1 \over {k + 1}}\left( {1 - {1 \over {{e^{k + 1}}}}} \right),1} \right)$ -approximation algorithm, and the second is a randomized $\left( {{1 \over {k + 1}}\left( {1 - {1 \over {{e^{k + 1}}}}} \right) - \varepsilon ,1} \right)$ -approximation algorithm with improved time efficiency.


Author(s):  
Ganquan Shi ◽  
Shuyang Gu ◽  
Weili Wu

[Formula: see text]-submodular maximization is a generalization of submodular maximization, which requires us to select [Formula: see text] disjoint subsets instead of one subset. Attracted by practical values and applications, we consider [Formula: see text]-submodular maximization with two kinds of constraints. For total size and individual size difference constraints, we present a [Formula: see text]-approximation algorithm for maximizing a nonnegative k-submodular function, running in time [Formula: see text] at worst. Specially, if [Formula: see text] is multiple of [Formula: see text], the approximation ratio can reduce to [Formula: see text], running in time [Formula: see text] at worst. Besides, this algorithm can be applied to [Formula: see text]-bisubmodular achieving [Formula: see text]-approximation running in time [Formula: see text]. Furthermore, if [Formula: see text] is multiple of 2, the approximation ratio can reduce to [Formula: see text], running in time [Formula: see text] at worst. For individual size constraint, there is a [Formula: see text]-approximation algorithm for maximizing a nonnegative [Formula: see text]-submodular function and an nonnegative [Formula: see text]-bisubmodular function, running in time [Formula: see text] and [Formula: see text] respectively, at worst.


2019 ◽  
Vol 11 (06) ◽  
pp. 1950075
Author(s):  
Lei Lai ◽  
Qiufen Ni ◽  
Changhong Lu ◽  
Chuanhe Huang ◽  
Weili Wu

We consider the problem of maximizing monotone submodular function over the bounded integer lattice with a cardinality constraint. Function [Formula: see text] is submodular over integer lattice if [Formula: see text], [Formula: see text], where ∨ and ∧ represent elementwise maximum and minimum, respectively. Let [Formula: see text], and [Formula: see text], we study the problem of maximizing submodular function [Formula: see text] with constraints [Formula: see text] and [Formula: see text]. A random greedy [Formula: see text]-approximation algorithm and a deterministic [Formula: see text]-approximation algorithm are proposed in this paper. Both algorithms work in value oracle model. In the random greedy algorithm, we assume the monotone submodular function satisfies diminishing return property, which is not an equivalent definition of submodularity on integer lattice. Additionally, our random greedy algorithm makes [Formula: see text] value oracle queries and deterministic algorithm makes [Formula: see text] value oracle queries.


2009 ◽  
Vol 34 (12) ◽  
pp. 1467-1474
Author(s):  
Zhe LV ◽  
Fu-Li WANG ◽  
Yu-Qing CHANG ◽  
Yang LIU

2019 ◽  
Vol 41 (15) ◽  
pp. 4380-4386
Author(s):  
Tu Xianping ◽  
Lei Xianqing ◽  
Ma Wensuo ◽  
Wang Xiaoyi ◽  
Hu Luqing ◽  
...  

The minimum zone fitting and error evaluation for the logarithmic curve has important applications. Based on geometry optimization approximation algorithm whilst considering geometric characteristics of logarithmic curves, a new fitting and error evaluation method for the logarithmic curve is presented. To this end, two feature points, to serve as reference, are chosen either from those located on the least squares logarithmic curve or from amongst measurement points. Four auxiliary points surrounding each of the two reference points are then arranged to resemble vertices of a square. Subsequently, based on these auxiliary points, a series of auxiliary logarithmic curves (16 curves) are constructed, and the normal distance and corresponding range of values between each measurement point and all auxiliary logarithmic curves are calculated. Finally, by means of an iterative approximation technique consisting of comparing, evaluating, and changing reference points; determining new auxiliary points; and constructing corresponding auxiliary logarithmic curves, minimum zone fitting and evaluation of logarithmic curve profile errors are implemented. The example results show that the logarithmic curve can be fitted, and its profile error can be evaluated effectively and precisely using the presented method.


2020 ◽  
Vol 287 ◽  
pp. 77-84
Author(s):  
Pengcheng Liu ◽  
Zhao Zhang ◽  
Xianyue Li ◽  
Weili Wu

Author(s):  
Jiawen Gao ◽  
Suogang Gao ◽  
Wen Liu ◽  
Weili Wu ◽  
Ding-Zhu Du ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document