Surface wave tomography and azimuthal anisotropy of the Philippine Sea Plate

2013 ◽  
Vol 592 ◽  
pp. 94-112 ◽  
Author(s):  
Yu-Lien Yeh ◽  
Honn Kao ◽  
Strong Wen ◽  
Wen-Yen Chang ◽  
Chau-Huei Chen
2020 ◽  
Vol 224 (3) ◽  
pp. 1724-1741
Author(s):  
Jeremy M Gosselin ◽  
Pascal Audet ◽  
Andrew J Schaeffer ◽  
Fiona A Darbyshire ◽  
Clément Estève

SUMMARY Surface wave tomography is a valuable tool for constraining azimuthal anisotropy at regional scales. However, sparse and uneven coverage of dispersion measurements make meaningful uncertainty estimation challenging, especially when applying subjective model regularization. This paper considers azimuthal anisotropy constrained by measurements of surface wave dispersion data within a Bayesian trans-dimensional (trans-d) tomographic inversion. A recently proposed alternative model parametrization for trans-d inversion is implemented in order to produce more realistic models than previous studies considering trans-d surface wave tomography. The reversible-jump Markov chain Monte Carlo sampling technique is used to numerically estimate the posterior probability density of the model parameters. Isotropic and azimuthally anisotropic components of surface wave group velocity maps (and their associated uncertainties) are estimated while avoiding model regularization and allowing model complexity to be determined by the data information content. Furthermore, data errors are treated as unknown, and solved for within the inversion. The inversion method is applied to measurements of surface wave dispersion from regional earthquakes recorded over northern Cascadia and Haida Gwaii, a region of complex active tectonics but highly heterogeneous station coverage. Results for isotropic group velocity are consistent with previous studies that considered the southern part of the study region over Cascadia. Azimuthal anisotropic fast-axis directions are generally margin-parallel between Vancouver Island and Haida Gwaii, with a small change in direction and magnitude along the margin which may be attributed to the changing tectonic regime (from subduction to transform tectonics). Estimated errors on the dispersion data (solved for within the inversion) reveal a correlation between surface wave period and the dependence of data errors on travel path length. This paper demonstrates the value of considering azimuthal anisotropy within Bayesian tomographic inversions. Furthermore, this work provides structural context for future studies of tectonic structure and dynamics of northern Cascadia and Haida Gwaii, with the aim of improving our understanding of seismic and tsunami hazards.


2015 ◽  
Vol 42 (11) ◽  
pp. 4326-4334 ◽  
Author(s):  
Shantanu Pandey ◽  
Xiaohui Yuan ◽  
Eric Debayle ◽  
Frederik Tilmann ◽  
Keith Priestley ◽  
...  

2012 ◽  
Vol 4 (1) ◽  
pp. 1-31 ◽  
Author(s):  
P. Kumar ◽  
X. Yuan ◽  
R. Kind ◽  
J. Mechie

Abstract. The dense deployment of seismic stations so far in the western half of the United States within the USArray project provides the opportunity to study in greater detail the structure of the lithosphere-asthenosphere system. We use the S receiver function technique for this purpose which has higher resolution than surface wave tomography, is sensitive to seismic discontinuities and has no problems with multiples like P receiver functions. Only two major discontinuities are observed in the entire area down to about 300 km depth. These are the crust-mantle boundary (Moho) and a negative boundary which we correlate with the lithosphere-asthenosphere boundary (LAB) since a low velocity zone is the classical definition of the seismic observation of the asthenosphere by Gutenberg (1926). Our S receiver function LAB is at a depth of 70–80 km in large parts of westernmost North America. East of the Rocky Mountains its depth is generally between 90 and 110 km. Regions with LAB depths down to about 140 km occur in a stretch from northern Texas over the Colorado Plateau to the Columbia Basalts. These observations agree well with tomography results in the westernmost USA and at the east coast. However, in the central cratonic part of the USA the tomography LAB is near 200 km depth. At this depth no discontinuity is seen in the S receiver functions. The negative signal near 100 km depth in the central part of the USA is interpreted by Yuan and Romanowicz (2010) or Lekic and Romanowicz (2011) as a recently discovered mid lithospheric discontinuity (MLD). A solution for the discrepancy between receiver function imaging and surface wave tomography is not yet obvious and requires more high resolution studies at other cratons before a general solution may be found. Our results agree well with petrophysical models of increased water content in the asthenosphere, which predict a sharp and shallow LAB also in continents (Mierdel et al., 2007).


Sign in / Sign up

Export Citation Format

Share Document