Petrofabric and seismic properties of lithospheric mantle xenoliths from the Calatrava volcanic field (Central Spain)

2016 ◽  
Vol 683 ◽  
pp. 200-215 ◽  
Author(s):  
P. Puelles ◽  
B. Ábalos ◽  
J.I. Gil Ibarguchi ◽  
F. Sarrionandia ◽  
M. Carracedo ◽  
...  
Lithosphere ◽  
2018 ◽  
Vol 11 (2) ◽  
pp. 192-208 ◽  
Author(s):  
Carlos Villaseca ◽  
Elena A. Belousova ◽  
Dan N. Barfod ◽  
José M. González-Jiménez

Solid Earth ◽  
2019 ◽  
Vol 10 (4) ◽  
pp. 1099-1121 ◽  
Author(s):  
Károly Hidas ◽  
Carlos J. Garrido ◽  
Guillermo Booth-Rea ◽  
Claudio Marchesi ◽  
Jean-Louis Bodinier ◽  
...  

Abstract. Subduction-transform edge propagator (STEP) faults are the locus of continual lithospheric tearing at slab edges, resulting in sharp changes in the lithospheric and crustal thickness and triggering lateral and/or near-vertical mantle flow. However, the mechanisms at the lithospheric mantle scale are still poorly understood. Here, we present the microstructural study of olivine-rich lherzolite, harzburgite and wehrlite mantle xenoliths from the Oran volcanic field (Tell Atlas, northwest Algeria). This alkali volcanic field occurs along a major STEP fault responsible for the Miocene westward slab retreat in the westernmost Mediterranean. Mantle xenoliths provide a unique opportunity to investigate the microstructures in the mantle section of a STEP fault system. The microstructures of mantle xenoliths show a variable grain size ranging from coarse granular to fine-grained equigranular textures uncorrelated with lithology. The major element composition of the mantle peridotites provides temperature estimates in a wide range (790–1165 ∘C) but in general, the coarse-grained and fine-grained peridotites suggest deeper and shallower provenance depth, respectively. Olivine grain size in the fine-grained peridotites depends on the size and volume fraction of the pyroxene grains, which is consistent with pinning of olivine grain growth by pyroxenes as second-phase particles. In the coarse-grained peridotites, well-developed olivine crystal-preferred orientation (CPO) is characterized by orthorhombic and [100]-fiber symmetries, and orthopyroxene has a coherent CPO with that of olivine, suggesting their coeval deformation by dislocation creep at high temperature. In the fine-grained microstructures, along with the weakening of the fabric strength, olivine CPO symmetry exhibits a shift towards [010] fiber and the [010] and [001] axes of orthopyroxene are generally distributed subparallel to those of olivine. These data are consistent with deformation of olivine in the presence of low amounts of melts and the precipitation of orthopyroxenes from a melt phase. The bulk CPO of clinopyroxene mimics that of orthopyroxene via a topotaxial relationship of the two pyroxenes. This observation points to a melt-related origin of most clinopyroxenes in the Oran mantle xenoliths. The textural and geochemical record of the peridotites are consistent with interaction of a refractory harzburgite protolith with a high-Mg no. melt at depth (resulting in the formation of coarse-grained clinopyroxene-rich lherzolite and wehrlite) and with a low-Mg no. evolved melt in the shallow subcontinental lithospheric mantle (forming fine-grained harzburgite). We propose that pervasive melt–peridotite reaction – promoted by lateral and/or near-vertical mantle flow associated with lithospheric tearing – resulted in the synkinematic crystallization of secondary lherzolite and wehrlite and had a key effect on grain size reduction during the operation of the Tell–Rif STEP fault. Melt–rock reaction and secondary formation of lherzolite and wehrlite may be widespread in other STEP fault systems worldwide.


2019 ◽  
Author(s):  
Károly Hidas ◽  
Carlos J. Garrido ◽  
Guillermo Booth-Rea ◽  
Claudio Marchesi ◽  
Jean-Louis Bodinier ◽  
...  

Abstract. Subduction-Transform Edge Propagator (STEP) faults are the locus of continual lithospheric tearing at slab edges, resulting in sharp changes in the lithospheric and crustal thickness and triggering lateral and/or near-vertical mantle flow. However, the mechanisms at the lithospheric mantle scale are still poorly understood. Here, we present the microstructural study of olivine-rich lherzolite, harzburgite and wehrlite mantle xenoliths from the Oran volcanic field (Tell Atlas, NW Algeria). This alkali volcanic field occurs along a major STEP fault responsible for the Miocene westward slab retreat in the westernmost Mediterranean. Mantle xenoliths provide a unique opportunity to investigate the microstructures in the mantle section of a STEP fault system. The microstructures of mantle xenoliths show a variable grain size ranging from coarse granular to fine-grained equigranular textures uncorrelated with modal variations. The major element composition of the mantle peridotites provides temperature estimates in a wide range (790–1165 °C) but in general, the coarse-grained and fine-grained peridotites suggest deeper and shallower provenance depth, respectively. Olivine grain size in the fine-grained peridotites depends on the size and volume fraction of the pyroxene grains, which is consistent with pinning of olivine grain growth by pyroxenes as second phase particles. In the coarse-grained peridotites, well-developed olivine crystal preferred orientation (CPO) is characterized by orthorhombic and [100]-fiber symmetries, and orthopyroxene has a coherent CPO with that of olivine, suggesting their coeval deformation by dislocation creep at high-temperature. In the fine-grained microstructures, along with the weakening of the fabric strength, olivine CPO symmetry exhibits a shift towards [010]-fiber and the [010]- and [001]-axes of orthopyroxene are generally distributed subparallel to those of olivine. These data are consistent with deformation of olivine in the presence of low amounts of melts and the precipitation of orthopyroxenes from a melt phase. The bulk CPO of clinopyroxene mimics that of orthopyroxene via a topotaxial relationship of the two pyroxenes. This observation points to a melt-related origin of most clinopyroxenes in the Oran mantle xenoliths. The textural and geochemical record of the peridotites are consistent with interaction of a refractory harzburgite protolith with a high-Mg# melt at depth (resulting in the formation of coarse-grained clinopyroxene-rich lherzolite and wehrlite), and with a low-Mg# evolved melt in the shallow subcontinental lithospheric mantle (forming fine-grained harzburgite). We propose that pervasive melt-peridotite reaction – promoted by lateral and/or near-vertical mantle flow associated with lithospheric tearing – resulted in the synkinematic crystallization of secondary lherzolite and wehrlite and played a key effect on grain size reduction during the operation of the Rif-Tell STEP fault. Melt-rock reaction and secondary formation of lherzolite and wehrlite may be widespread in other STEP fault systems worldwide.


2020 ◽  
Author(s):  
Nóra Liptai ◽  
Thomas P. Lange ◽  
Levente Patkó ◽  
Márta Berkesi ◽  
Csaba Szabó ◽  
...  

<p>Nominally anhydrous minerals in the lithospheric mantle, such as olivine and pyroxenes can host a small amount (tens to hundreds of ppm) of structurally bound hydroxyl (‘water’). Numerous studies pointed out that water has a strong effect on the rheological properties of the lithospheric mantle, such as melting temperature, electrical conductivity, viscosity and seismic wave propagation speed. Water content of mantle xenoliths can thus be used to estimate such rheological properties which can then be compared with geophysical observations.</p><p>In this study we present effective viscosities and electrical resistivities calculated with the use of ‘water’ contents of upper mantle xenoliths from the Carpathian-Pannonian region (CPR). The CPR is a young extensional basin in Central Europe, where intraplate alkali basalts sampled the lithosphere in five areas, including locations from both the central and marginal regions. ‘Water’ contents are generally higher in xenoliths from the marginal areas compared with those from the central areas of the CPR, due to significant hydrogen loss during the extension in the Miocene (Patkó et al., 2019). It is demonstrated that due to the different ‘water’ contents, the lithospheric mantle in the central areas can be characterized with higher effective viscosity and electrical resistivity, and thus can be considered as more rigid than the marginal areas. This relative rigidity induced by lithospheric thinning may be a general feature of extensional basin systems worldwide, and can be regarded as a ‘self-healing’ mechanism of the extending lithosphere.</p><p> </p><p>References:</p><p>Patkó, L., Liptai, N., Kovács, I. J., Aradi, L. E., Xia, Q.-K., Ingrin, J., Mihály, J., O’Reilly, S. Y., Griffin, W. L., Wesztergom, V., Szabó, C., 2019. Extremely low structural hydroxyl contents in upper mantle xenoliths from the Nógrád-Gömör Volcanic Field (northern Pannonian Basin): Geodynamic implications and the role of post-eruptive re-equilibration. Chemical Geology, 507, 23-41.</p>


Sign in / Sign up

Export Citation Format

Share Document