Comparison of the effect of edoxaban, a direct factor Xa inhibitor, with a direct thrombin inhibitor, melagatran, and heparin on intracerebral hemorrhage induced by collagenase in rats

2014 ◽  
Vol 133 (4) ◽  
pp. 622-628 ◽  
Author(s):  
Yasufumi Shirasaki ◽  
Yoshiyuki Morishima ◽  
Toshiro Shibano
Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 3154-3154 ◽  
Author(s):  
Joanne van Ryn ◽  
Norbert Hauel ◽  
Henning Priepke ◽  
Kai Gerlach ◽  
Annette Schuler-Metz ◽  
...  

Abstract Inhibition of two key serine proteases in the coagulation cascade, thrombin (IIa) and factor Xa, are currently being exploited for direct, oral antithrombotic activity in the clinic. However, it is still unclear if one form of coagulation factor inhibition is more effective than the other. Thus, the objective of this study was to test the antithrombotic efficacy of the clinically advanced compounds, the potent direct thrombin inhibitor, dabigatran etexilate and rivaroxaban, a potent direct factor Xa inhibitor in the rabbit A-V shunt model of thrombosis. In addition, another internally developed factor Xa inhibitor, BI42551, with properties similar to those in clinical development was tested. All three compounds have affinities (Ki) for their respective coagulation factor in the low nM range, i.e. human thrombin with dabigatran or human factor Xa with rivaroxaban or BI42551. In addition, each is at least >700-fold selective for its human coagulation factor, dabigatran etexilate for IIa vs Xa and the factor Xa inhibitors for Xa vs IIa. These compounds are highly selective inhibitors not only of the human enzyme, but also have similar values for rabbit thrombin and Xa, respectively. All experiments were performed according to German animal ethics guidelines. The femoral artery and vein of anesthetised rabbits were connected with polyethylene tubing containing a fixed length of suture, pre-soaked in tissue factor. Blood flow through the shunt was maintained over 40 min, after which the suture with any thrombus was removed from the shunt and weighed. The prodrug dabigatran etexilate and the factor Xa inhibitors were given in doses of 3 and 10 mg/kg orally and the rabbits were anesthetised either 90 min or at the highest dose, also 6.5 hrs after drug administration. There was a dose-dependent reduction of thrombus formation with all three compounds as compared to control. Antithrombotic efficacy at 3 and 10 mg/kg is shown as % inhibition of control measured 2 hrs after drug administration (table, columns 2&3). These effects were long-lasting, as significant antithrombotic activity was also measured 7 hrs post administration (last column). Plasma levels of all compounds were dose-dependent and clotting tests correlated well with dose. 3 mg/kg–2 hrs 10 mg/kg–2 hrs 10 mg/kg–7 hrs Dabigatran etexilate 61.7 ± 8.7 82.1 ± 5.5 59.5 ± 17.6 Rivaroxaban 43.2 ± 7.7 64.5 ± 8.1 41.0 ± 8.4 BI42551 31.1 ± 10.7 70.3 ± 3.3 39.9 ± 14.7 These results show that both thrombin and factor Xa inhibition are effective methods of inhibiting thrombosis in a rabbit AV shunt model. All drugs had potent and long-lasting effects after a single oral administration in this model, though dabigatran showed a trend to elevated antithrombotic efficacy at both 2 and 7 hrs. However, in the clinical setting differences in antithrombotic treatment may also be related to differences in pharmacokinetic profiles, drug interactions or metabolism, or the individual side effect profiles of each compound.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 3153-3153 ◽  
Author(s):  
Seiji Kaku ◽  
Ken-ichi Suzuki ◽  
Toshiyuki Funatsu ◽  
Minori Saitoh ◽  
Hiroyuki Koshio ◽  
...  

Abstract The objective of this study was to evaluate the effects of direct factor Xa inhibitor, YM150 and its major in vivo metabolite, YM-222714, on clot formation and clot lysis compared with other anticoagulants, such as a direct thrombin inhibitor (melagatran), a pentasaccharide (fondaparinux), low molecular weight heparin (enoxaparin) and unfractionated heparin. To assess clot lysis, the tissue plasminogen activator (tPA)-induced clot lysis assay was used with human plasma triggered by low and high levels of tissue factor (TF). Under low TF conditions, clot formation was completely prevented by melagatran at 1 μmol/L, by fondaparinux at all concentrations examined (0.1 to 1 μg/mL), by enoxaparin at 0.3 and 1 IU/mL and by heparin at 0.1 and 0.3 U/mL. Even under high TF conditions, 0.3 U/mL heparin prevented any clot formation. Although melagatran, fondaparinux, enoxaparin, and heparin potently prevented plasma clot formation under low TF conditions, under high TF conditions they were less effective at prolonging the clotting time. Under both low and high TF conditions, YM150 and YM-222714 prolonged the clotting time in a concentration dependent manner at concentrations between 0.3 and 3 μmol/L. YM150 and YM-222714 significantly accelerated clot lysis under both low and high TF conditions, but their effects were most evident under high TF conditions. Lower concentrations of melagatran (0.1 and 0.3 μmol/L) enhanced clot lysis under low TF conditions, but under high TF conditions, enhancement of clot lysis required higher melagatran concentrations (0.3 μmol/L or more). Under high TF conditions, fondaparinux enhanced clot lysis only at the highest concentration tested (1 μg/mL). Enoxaparin and heparin enhanced clot lysis under low TF conditions at the lowest test concentrations (0.1 IU/mL and 0.03 U/mL, respectively). Both also enhanced clot lysis under high TF conditions, but their effect reached statistical significance only at higher concentrations (1 IU/mL and 0.1 U/mL, respectively). These results suggested that direct factor Xa inhibitors, YM150 and YM-222714, exert stable anticoagulant effects independently of TF concentration. Both inhibitors enhanced tPA-induced fibrinolysis in human plasma clotted via the extrinsic coagulation pathway. Useful characteristics of YM150 and YM-222714, such as a linear dose response and reliable anticoagulation independent of TF concentration, may lead to the creation of an anticoagulant that is easier to use in the clinical setting than existing products. Potentially beneficial antithrombotic effects, which can be promoted by accelerating endogenous fibrinolytic pathways, may further aid in the prevention or treatment of thrombosis.


Author(s):  
Jawad H Butt ◽  
Emil L Fosbøl ◽  
Peter Verhamme ◽  
Thomas A Gerds ◽  
Kasper Iversen ◽  
...  

Abstract Background Treatment with dabigatran, an oral direct thrombin inhibitor, reduces the virulence of Staphylococcus aureus in in vitro and in vivo models. However, it remains to be determined whether dabigatran reduces the risk of S. aureus infections in humans. We investigated the incidence rate of S. aureus bacteremia (SAB) in patients with atrial fibrillation treated with the direct thrombin inhibitor dabigatran compared with patients treated with the factor Xa-inhibitors rivaroxaban, apixaban, and edoxaban. Methods In this observational cohort study, 112 537 patients with atrial fibrillation who initiated treatment with direct oral anticoagulants (August 2011–December 2017) were identified from Danish nationwide registries. The incidence rates of SAB in patients treated with dabigatran versus patients treated with the factor Xa-inhibitors were examined by multivariable Cox regression accounting for time-dynamic changes in exposure status during follow-up. Results A total of 112 537 patients were included. During a median follow-up of 2.0 years, 186 patients in the dabigatran group and 356 patients in the factor Xa-inhibitor group were admitted with SAB. The crude incidence rate of SAB was lower in the dabigatran group compared with the factor Xa-inhibitor group (22.8 [95% confidence interval [CI], 19.7–26.3] and 33.8 [95% CI, 30.5–37.6] events per 10 000 person-years, respectively). In adjusted analyses, dabigatran was associated with a significantly lower incidence rate of SAB compared with factor Xa-inhibitors (incidence rate ratio, .76; 95% CI, .63–.93). Conclusions Treatment with dabigatran was associated with a significantly lower incidence rate of SAB compared with treatment with factor Xa-inhibitors.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 3155-3155 ◽  
Author(s):  
Minori Saitoh ◽  
Seiji Kaku ◽  
Toshiyuki Funatsu ◽  
Hiroyuki Koshio ◽  
Tsukasa Ishihara ◽  
...  

Abstract YM150, an oral, direct factor Xa inhibitor, is currently being evaluated in Phase II studies as prophylaxis for venous thromboembolism in patients undergoing orthopedic surgery. In the present study, we compared the antithrombotic effect of YM150 with the effects of antithrombin-dependent indirect factor Xa inhibitors, enoxaparin and fondaparinux, and a direct thrombin inhibitor, ximelagatran, in ferric chloride (FeCl3)-induced venous and arterial thrombosis models in rats. We also evaluated the bleeding time in a rat tail transection model. Prior to any experimentation, male Sprague-Dawley rats, which had been fasting for at least 12 h, were anesthetized with urethane (1 g/kg, i.p.) or sodium pentobarbital (50 mg/kg, i.p.). YM150 and ximelagatran were administered intra-duodenally, and both enoxaparin and fondaparinux were given subcutaneously, 30 min prior to induction of thrombus or tail transection. All animals were kept warm with a heating pad during the experiments. Venous and arterial thromboses were produced, respectively, by the 5 min application of 8% FeCl3 soaked filter paper to the external surface of the inferior vena cava and 35% FeCl3 soaked filter paper to the abdominal aorta. The venous thrombosis model was supplemented by using a silk thread venous stenosis. To measure bleeding time, the tail was transected 5 mm from its tip. Blood was carefully blotted each 30 sec with a filter paper. Once a blood stain was observed, we defined bleeding as blood flow sustained over 30 sec. Bleeding time was defined as the sum of the bleeding periods during the 60 min observation in each animal. Administration of intra-duodenal YM150 significantly inhibited both venous and arterial thrombus formation at doses of 10 mg/kg or greater, and 3 mg/kg or greater, respectively. This indicated that YM150 promoted an antithrombotic effect at similar dose ranges for venous and arterial thromboses. In contrast, YM150 did not prolong the bleeding time at doses up to 30 mg/kg. Venous thrombus formation was inhibited by subcutaneous enoxaparin at doses of 100 IU/kg or greater and fondaparinux at doses of 0.03 mg/kg or greater. Arterial thrombus formation was inhibited by subcutaneous administration of 1000 IU/kg enoxaparin and 3 mg/kg fondaparinux. The results indicated that 10–100 times higher doses of these antithrombotics were needed to inhibit arterial thrombosis. Furthermore, enoxaparin at doses of 300 IU/kg or greater and fondaparinux at doses of 1 mg/kg or greater, significantly prolonged the bleeding time, suggesting that these two medications may be associated with increased risk of hemorrhage at concentrations used to prevent arterial thrombosis. At doses of 1 mg/kg or greater, intra-duodenal ximelagatran inhibited both venous and arterial thrombus formation. The dose-response curve for ximelagatran tended to be steeper than that for other anticoagulants tested. Antithrombotic doses of ximelagatran (1 mg/kg or greater), produced similar prolongations of bleeding time as those seen with administration of enoxaparin and fondaparinux. In conclusion, YM150, an oral direct factor Xa inhibitor, shows promise as an antithrombotic drug with potentially wider safety margins than current antithrombin-dependent factor Xa inhibitors and a thrombin inhibitor.


2012 ◽  
Vol 40 (12) ◽  
pp. 2250-2255 ◽  
Author(s):  
Mohinder S. Bathala ◽  
Hiroshi Masumoto ◽  
Toshihiro Oguma ◽  
Ling He ◽  
Chris Lowrie ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document