High concentrations of stavudine impair fatty acid oxidation without depleting mitochondrial DNA in cultured rat hepatocytes

2008 ◽  
Vol 22 (4) ◽  
pp. 887-898 ◽  
Author(s):  
Anissa Igoudjil ◽  
Julie Massart ◽  
Karima Begriche ◽  
Véronique Descatoire ◽  
Marie-Anne Robin ◽  
...  
1987 ◽  
Vol 243 (2) ◽  
pp. 405-412 ◽  
Author(s):  
T W Stephens ◽  
R A Harris

The sensitivity of carnitine palmitoyltransferase I to inhibition by 4-hydroxyphenylglyoxylate was decreased markedly in liver mitochondria isolated from either 48 h-starved or streptozotocin-diabetic rats. These treatments of the rat also decreased the sensitivity of fatty acid oxidation by isolated hepatocytes to inhibition by this compound. Furthermore, incubation of hepatocytes prepared from fed rats with N6O2′-dibutyryl cyclic AMP also decreased the sensitivity, whereas incubation of hepatocytes prepared from starved rats with lactate plus pyruvate had the opposite effect on 4-hydroxyphenylglyoxylate inhibition of fatty acid oxidation. The sensitivity of carnitine palmitoyltransferase I of mitochondria to 4-hydroxyphenylglyoxylate increased in a time-dependent manner, as previously reported for malonyl-CoA. Likewise, oleoyl-CoA activated carnitine palmitoyltransferase I in a time-dependent manner and prevented the sensitization by 4-hydroxyphenylglyoxylate. Increased exogenous carnitine caused a moderate increase in fatty acid oxidation by hepatocytes under some conditions and a decreased 4-hydroxyphenylglyoxylate inhibition of fatty acid oxidation at low oleate concentration, without decreasing the difference in 4-hydroxyphenylglyoxylate inhibition between fed- and starved-rat hepatocytes. Time-dependent changes in the conformation of carnitine palmitoyltransferase I or the membrane environment may be involved in differences among nutritional states in 4-hydroxyphenylglyoxylate-sensitivity of carnitine palmitoyltransferase I.


1999 ◽  
Vol 338 (3) ◽  
pp. 783-791 ◽  
Author(s):  
Deborah M. MUOIO ◽  
Kimberly SEEFELD ◽  
Lee A. WITTERS ◽  
Rosalind A. COLEMAN

AMP-activated kinase (AMPK) is activated in response to metabolic stresses that deplete cellular ATP, and in both liver and skeletal muscle, activated AMPK stimulates fatty acid oxidation. To determine whether AMPK might reciprocally regulate glycerolipid synthesis, we studied liver and skeletal-muscle lipid metabolism in the presence of 5-amino-4-imidazolecarboxamide (AICA) riboside, a cell-permeable compound whose phosphorylated metabolite activates AMPK. Adding AICA riboside to cultured rat hepatocytes for 3 h decreased [14C]oleate and [3H]glycerol incorporation into triacylglycerol (TAG) by 50% and 38% respectively, and decreased oleate labelling of diacylglycerol by 60%. In isolated mouse soleus, a highly oxidative muscle, incubation with AICA riboside for 90 min decreased [14C]oleate incorporation into TAG by 37% and increased 14CO2 production by 48%. When insulin was present, [14C]oleate oxidation was 49% lower and [14C]oleate incorporation into TAG was 62% higher than under basal conditions. AICA riboside blocked insulin's antioxidative and lipogenic effects, increasing fatty acid oxidation by 78% and decreasing labelled TAG 43%. Similar results on fatty acid oxidation and acylglycerol synthesis were observed in C2C12 myoblasts, and in differentiated C2C12 myotubes, AICA riboside also inhibited the hydrolysis of intracellular TAG. These data suggest that AICA riboside might inhibit sn-glycerol-3-phosphate acyltransferase (GPAT), which catalyses the committed step in the pathway of glycerolipid biosynthesis. Incubating rat hepatocytes with AICA riboside for both 15 and 30 min decreased mitochondrial GPAT activity 22–34% without affecting microsomal GPAT, diacylglycerol acyltransferase or acyl-CoA synthetase activities. Finally, purified recombinant AMPKα1 and AMPKα2 inhibited hepatic mitochondrial GPAT in a time-and ATP-dependent manner. These data show that AMPK reciprocally regulates acyl-CoA channelling towards β-oxidation and away from glycerolipid biosynthesis, and provide strong evidence that AMPK phosphorylates and inhibits mitochondrial GPAT.


1991 ◽  
Vol 279 (1) ◽  
pp. 147-150 ◽  
Author(s):  
R Rognstad

The pathways of peroxisomal and mitochondrial fatty acid oxidation were monitored with the use of substrates which produce NAD3H. I used as marker substrates: D-[3-3H]3-hydroxybutyrate for mitochondrial NAD3H production, [2-3H]glycerol for cytosolic NAD3H production, and [2-3H]acetate to measure carbon-bound 3H which was also generated by the metabolism of the commercial 9,10-3H-labelled fatty acids. The assumption that peroxisomal NAD3H can be considered to be equivalent to cytosolic NAD3H was supported using a specific inhibitor of mitochondrial fatty acid oxidation. The approach involves determination of the specific yields, and the relative distribution on carbons 4 and 6, of 3H in glucose from the marker substrates and the labelled fatty acids. In hepatocytes from clofibrate-treated rats, the amount of palmitate or oleate oxidation which starts in the peroxisomes is comparable with that which starts in the mitochondria.


2018 ◽  
Vol 315 (4) ◽  
pp. E622-E633 ◽  
Author(s):  
Yingxue Wang ◽  
Bridgette A. Christopher ◽  
Kirkland A. Wilson ◽  
Deborah Muoio ◽  
Robert W. McGarrah ◽  
...  

High concentrations of propionate and its metabolites are found in several diseases that are often associated with the development of cardiac dysfunction, such as obesity, diabetes, propionic acidemia, and methylmalonic acidemia. In the present work, we employed a stable isotope-based metabolic flux approach to understand propionate-mediated perturbation of cardiac energy metabolism. Propionate led to accumulation of propionyl-CoA (increased by ~101-fold) and methylmalonyl-CoA (increased by 36-fold). This accumulation caused significant mitochondrial CoA trapping and inhibited fatty acid oxidation. The reduced energy contribution from fatty acid oxidation was associated with increased glucose oxidation. The enhanced anaplerosis of propionate and CoA trapping altered the pool sizes of tricarboxylic acid cycle (TCA) metabolites. In addition to being an anaplerotic substrate, the accumulation of proprionate-derived malate increased the recycling of malate to pyruvate and acetyl-CoA, which can enter the TCA for energy production. Supplementation of 3 mM l-carnitine did not relieve CoA trapping and did not reverse the propionate-mediated fuel switch. This is due to new findings that the heart appears to lack the specific enzyme catalyzing the conversion of short-chain (C3 and C4) dicarboxylyl-CoAs to dicarboxylylcarnitines. The discovery of this work warrants further investigation on the relevance of dicarboxylylcarnitines, especially C3 and C4 dicarboxylylcarnitines, in cardiac conditions such as heart failure.


2004 ◽  
Vol 45 (7) ◽  
pp. 1279-1288 ◽  
Author(s):  
Daniel Lindén ◽  
Lena William-Olsson ◽  
Magdalena Rhedin ◽  
Anna-Karin Asztély ◽  
John C. Clapham ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document