Effect of lead on proliferation and neural differentiation of mouse bone marrow-mesenchymal stem cells

2008 ◽  
Vol 22 (4) ◽  
pp. 995-1001 ◽  
Author(s):  
Shabnam Kermani ◽  
Khadijeh Karbalaie ◽  
Seyed Hossein Madani ◽  
Ali Akbar Jahangirnejad ◽  
Mohamadreza Baghaban Eslaminejad ◽  
...  
2016 ◽  
Vol 19 (2) ◽  
pp. 111-116
Author(s):  
Rafal Hussamildeen Abdullah ◽  
◽  
Shahlla Mahdi Salih ◽  
Nahi Yosef Yaseen ◽  
Ahmed Majeed Al-Shammari ◽  
...  

IBRO Reports ◽  
2019 ◽  
Vol 6 ◽  
pp. S560-S561
Author(s):  
Liliana Francis Turner ◽  
Diana Katherine Garzon Perdomo ◽  
Lina Maria De Los Reyes ◽  
Francis Turner Liliana

2007 ◽  
Vol 293 (5) ◽  
pp. C1561-C1567 ◽  
Author(s):  
Rong Tao ◽  
Chu-Pak Lau ◽  
Hung-Fat Tse ◽  
Gui-Rong Li

Bone marrow mesenchymal stem cells (MSCs) are used as a cell source for cardiomyoplasty; however, the cellular electrophysiological properties are not fully understood. The present study was to investigate the functional ionic channels in undifferentiated mouse bone marrow MSCs using whole cell patch-voltage clamp technique, RT-PCR, and Western immunoblotting analysis. We found that three types of ionic currents were present in mouse MSCs, including a Ca2+-activated K+ current ( IKCa), an inwardly rectifying K+ current ( IKir), and a chloride current ( ICl). IKir was inhibited by Ba2+, and IKCa was activated by the Ca2+ ionophore A-23187 and inhibited by the intermediate-conductance IKCa channel blocker clotrimazole. ICl was activated by hyposmotic (0.8 T) conditions and inhibited by the chloride channel blockers DIDS and NPPB. The corresponding ion channel genes and proteins, KCa3.1 for IKCa, Kir2.1 for IKir, and Clcn3 for ICl, were confirmed by RT-PCR and Western immunoblotting analysis in mouse MSCs. These results demonstrate that three types of functional ion channel currents (i.e., IKir, IKCa, and ICl) are present in mouse bone marrow MSCs.


Sign in / Sign up

Export Citation Format

Share Document