bone marrow mscs
Recently Published Documents


TOTAL DOCUMENTS

80
(FIVE YEARS 27)

H-INDEX

14
(FIVE YEARS 3)

2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. 45-46
Author(s):  
Dmitry Kondrikov ◽  
Ahmed Elmansi ◽  
Xing-ming Shi ◽  
Meghan McGee-Lawrence ◽  
Sadanand Fulzele ◽  
...  

Abstract Cell senescence is emerging as a critical factor in the pathophysiology of aging bone loss. We have shown that the essential amino acid tryptophan is metabolized by IDO-1 in the periphery to generate kynurenine (KYN), and that KYN can signal though the aryl hydrocarbon receptor (AhR) transcription factor pathway to inhibit osteogenesis in bone marrow MSCs via epigenetic regulation of osteogenic genes, while also upregulating osteoclastogenic transcription factors and genes driving osteoclast activity. Further, we recently showed that KYN acting via AhR inhibits MSC autophagy while inducing senescence. Here we demonstrate that KYN metabolites downstream from KYN act via the AhR signaling pathway to inhibit autophagy and induce SASP expression and drive senescence in murine and human bone marrow MSCs. We focused on two of these metabolites, quinolinic acid (QA) and kynurenic acid (KYNA) and investigated their effects on BMSC cellular function. We demonstrated that both kynurenine pathway metabolites QA and KYNA increase biomarkers for senescence including beta-galactosidase, p21/Cdkn1 and other SASPs such as PAI-1 and TIMP-2, as well as nuclear DNA damage leading to senescent markers like H2A Ser139 phosphorylation, and the accumulation of senescence-associated hetero chromatin foci (SAHF) with H3K9-me3 labeling. Then upon treatment with the AhR inhibitor 3’4’-DMF the disruption of autophagy and induction of senescent biomarkers was blocked. Like KYN, the effects of QA and KYNA were mediated through the AhR receptor. Therefore, this presents novel therapeutic targets linked to KYN metabolite signaling via AhR to prevent senescence and bone loss.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Qing Tian ◽  
Chen Cao ◽  
Weijian Qiu ◽  
Han Wu ◽  
Lijun Zhou ◽  
...  

Survival of mesenchymal stem cells in the bone marrow is essential for bone marrow microenvironment homeostasis, but the molecular mechanisms remain poorly understood. RIPK1 has emerged as a critical molecule of programmed cell death in tissue homeostasis. However, little is known about the regulation of RIPK1 on bone marrow mesenchymal stem cells (MSCs). Here, we have investigated for the first time the role of RIPK1 in bone marrow MSCs. We have found that RIPK1 knockdown suppressed proliferation, differentiation, and migration in bone marrow MSCs. Furthermore, RIPK1 knockdown resulted in the opening of mitochondrial permeability transition pore (mPTP) and mtDNA damage, leading to mitochondrial dysfunction, and consequently induced apoptosis and necroptosis in bone marrow MSCs. Moreover, we identified that the p53-PUMA axis pathway was involved in mitochondrial dysfunction in RIPK1-deficient bone marrow MSCs. Together, our findings highlighted that RIPK1 was indispensable for bone marrow MSC survival.


Cartilage ◽  
2021 ◽  
pp. 194760352110476
Author(s):  
Karthikeyan Rajagopal ◽  
Porkizhi Arjunan ◽  
Srujan Marepally ◽  
Vrisha Madhuri

Objective Hypertrophic cartilage formation is a major setback in mesenchymal stem cells (MSCs)–mediated cartilage repair, and overcoming it requires optimization of differentiation. Here, we tested the miR-140 activated collagen hydrogel for the chondrogenic differentiation of MSCs and to produce hyaline cartilage. Methods Bone marrow MSCs isolated from 3 patients were pretreated with miR-140 and then chondrogenic differentiated. The 3-dimensional (3D) transfection potential of 5 different transfection reagents (Polyethylenimine, Lipofectamine, TransIT-X2, Amide:Cholesterol-based liposomes [AmC] and AmC pegylated with Tocofersolan [AmCTOC]) was compared and the reagent that showed higher green fluorescent protein (GFP) expression was selected. Finally, the collagen hydrogel was activated using miR-140-transfection complex and sustained delivered to MSCs during chondrogenic differentiation. After differentiation, the outcome was assessed by reverse transcription–polymerase chain reaction (RT-PCR), histology, immunohistochemistry, and compared with scrambled miRNA treated control. Results Pretreatment of MSCs with miR-140 significantly increased the expression of cartilage-specific genes ( COL2A1, SOX9, and ACAN) with reduced hypertrophic chondrocyte ( COL10A1) marker expression and better safranin-O staining than the control. The AmCTOC liposome showed a significant increase in 3D transfection of GFP expressing plasmid than the others. Furthermore, the knockdown of GAPDH using siRNA in HEK cells and expression of GFP mRNA in human bone marrow MSCs confirmed the 3D-transfection efficiency of AmCTOC. The sustained delivery of miR-140 using activated matrix formed a hyaline cartilage-like tissue with minimal COL10A1 expression in RT-PCR and immunohistochemistry. Conclusion Our results demonstrated the therapeutic potential of miR-140-activated hydrogel for MSCs-based cartilage tissue engineering, which could also be used for endogenous stem cells–mediated cartilage repair.


2021 ◽  
Vol 22 (12) ◽  
pp. 6391
Author(s):  
Mohammed Zayed ◽  
Steve Adair ◽  
Madhu Dhar

Synovial fluid contains cytokines, growth factors and resident mesenchymal stem cells (MSCs). The present study aimed to (1) determine the effects of autologous and allogeneic synovial fluid on viability, proliferation and chondrogenesis of equine bone marrow MSCs (BMMSCs) and (2) compare the immunomodulatory properties of equine synovial fluid MSCs (SFMSCs) and BMMSCs after stimulation with interferon gamma (INF-γ). To meet the first aim of the study, the proliferation and viability of MSCs were evaluated by MTS and calcein AM staining assays. To induce chondrogenesis, MSCs were cultured in a medium containing TGF-β1 or different concentrations of synovial fluid. To meet the second aim, SFMSCs and BMMSCs were stimulated with IFN-γ. The concentration of indoleamine-2,3-dioxygenase (IDO) and nitric oxide (NO) were examined. Our results show that MSCs cultured in autologous or allogeneic synovial fluid could maintain proliferation and viability activities. Synovial fluid affected chondrocyte differentiation significantly, as indicated by increased glycosaminoglycan contents, compared to the chondrogenic medium containing 5 ng/mL TGF-β1. After culturing with IFN-γ, the conditioned media of both BMMSCs and SFMSCs showed increased concentrations of IDO, but not NO. Stimulating MSCs with synovial fluid or IFN-γ could enhance chondrogenesis and anti-inflammatory activity, respectively, suggesting that the joint environment is suitable for chondrogenesis.


Author(s):  
Yan Jia ◽  
Youshan Zhao ◽  
Zheng Zhang ◽  
Lei Shi ◽  
Ying Fang ◽  
...  

The article has been withdrawn at the request of the authors of the journal "Current Topics in Medicinal Chemistry". Bentham Science apologizes to the readers of the journal for any inconvenience this may cause. The Bentham Editorial Policy on Article Withdrawal can be found at https://benthamscience.com/editorial-policies-main.php BENTHAM SCIENCE DISCLAIMER: It is a condition of publication that manuscripts submitted to this journal have not been published and will not be simultaneous-ly submitted or published elsewhere. Furthermore, any data, illustration, structure or table that has been published elsewhere must be reported, and copyright permission for reproduction must be obtained. Plagiarism is strictly forbidden, and by submit-ting the article for publication the authors agree that the publishers have the legal right to take appropriate action against the authors, if plagiarism or fabricated information is discovered. By submitting a manuscript the authors agree that the copyright of their article is transferred to the publishers if and when the article is accepted for publication.


2021 ◽  
Vol 12 (6) ◽  
Author(s):  
Zhaofeng Li ◽  
Peng Wang ◽  
Jinteng Li ◽  
Zhongyu Xie ◽  
Shuizhong Cen ◽  
...  

AbstractN6-methyladenosine (m6A) modification is widespread in messenger RNAs and increasing evidence suggests the crucial roles of m6A in cell differentiation and tissue development. However, whether m6A modulates the osteogenic differentiation of mesenchymal stem cells (MSCs) has not been fully elucidated. Here we show that conditional knockout of the demethylase Alkbh5 in bone marrow MSCs strengthened bone mass in mice. Loss- and gain-of-function studies demonstrated that ALKBH5 negatively regulates the osteogenic differentiation of MSCs in vitro. At a mechanistic level, meRIP-seq and RNA-seq in MSCs following knockdown of ALKBH5 revealed changes in transcripts of PRMT6 containing consensus m6A motifs required for demethylation by ALKBH5. Furthermore, we found that ALKBH5 accelerates the degradation rate of PRMT6 mRNA in an m6A-dependent manner, and that the ALKBH5-PRMT6 axis regulates the osteogenesis of MSCs, mainly through activation of the PI3K/AKT pathway. Thus, our work reveals a different facet of the novel ALKBH5-PRMT6 axis that modulates the osteogenic differentiation of MSCs, which can serve as a target to improve the clinical use of MSCs.


Cancers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 1059
Author(s):  
Jinyeong Yu ◽  
Sanghyuk Choi ◽  
Aran Park ◽  
Jungbeom Do ◽  
Donghyun Nam ◽  
...  

Cancer cachexia is a multifactorial systemic inflammation disease caused by complex interactions between the tumor and host tissues via soluble factors. However, whether cancer cachexia affects the bone marrow, in particular the hematopoietic stem cells (HSCs) and mesenchymal stem cells (MSCs), remains unclear. Here, we investigated the bone marrow and bone in a cancer cachexia animal model generated by transplanting Lewis lung carcinoma cells. The number of bone marrow mononuclear cells (BM-MNCs) started to significantly decrease in the cancer cachectic animal model prior to the discernable loss of muscle and fat. This decrease in BM-MNCs was associated with myeloid skewing in the circulation and the expansion of hematopoietic progenitors in the bone marrow. Bone loss occurred in the cancer cachexia animal model and accompanied the decrease in the bone marrow MSCs that play important roles in both supporting HSCs and maintaining bone homeostasis. Glucocorticoid signaling mediated the decrease in bone marrow MSCs in the cancer cachectic environment. The cancer cachexia environment also skewed the differentiation of the bone marrow MSCs toward adipogenic fate via JAK/STAT as well as glucocorticoid signaling. Our results suggest that the bone loss induced in cancer cachexia is associated with the depletion and the impaired differentiation capacity of the bone marrow MSCs.


2021 ◽  
Vol 8 (2) ◽  
Author(s):  
Rena Shido ◽  
Yoshinori Sumita ◽  
Masahito Hara ◽  
Mayumi Iwatake ◽  
Shun Narahara ◽  
...  

Abstract Gene-activated matrix (GAM) has a potential usefulness in bone engineering as an alternate strategy for the lasting release of osteogenic proteins but efficient methods to generate non-viral GAM remain to be established. In this study, we investigated whether an atelocollagen-based GAM containing naked-plasmid (p) DNAs encoding microRNA (miR) 20a, which may promote osteogenesis in vivo via multiple pathways associated with the osteogenic differentiation of mesenchymal stem/progenitor cells (MSCs), facilitates rat cranial bone augmentation. First, we confirmed the osteoblastic differentiation functions of generated pDNA encoding miR20a (pmiR20a) in vitro, and its transfection regulated the expression of several of target genes, such as Bambi1 and PPARγ, in rat bone marrow MSCs and induced the increased expression of BMP4. Then, when GAMs fabricated by mixing 100 μl of 2% bovine atelocollagen, 20 mg β-TCP granules and 0.5 mg (3.3 μg/μl) AcGFP plasmid-vectors encoding miR20a were transplanted to rat cranial bone surface, the promoted vertical bone augmentation was clearly recognized up to 8 weeks after transplantation, as were upregulation of VEGFs and BMP4 expressions at the early stages of transplantation. Thus, GAM-based miR delivery may provide an alternative non-viral approach by improving transgene efficacy via a small sequence that can regulate the multiple pathways.


2021 ◽  
Vol 10 ◽  
Author(s):  
Heather Fairfield ◽  
Samantha Costa ◽  
Carolyne Falank ◽  
Mariah Farrell ◽  
Connor S. Murphy ◽  
...  

Within the bone marrow microenvironment, mesenchymal stromal cells (MSCs) are an essential precursor to bone marrow adipocytes and osteoblasts. The balance between this progenitor pool and mature cells (adipocytes and osteoblasts) is often skewed by disease and aging. In multiple myeloma (MM), a cancer of the plasma cell that predominantly grows within the bone marrow, as well as other cancers, MSCs, preadipocytes, and adipocytes have been shown to directly support tumor cell survival and proliferation. Increasing evidence supports the idea that MM-associated MSCs are distinct from healthy MSCs, and their gene expression profiles may be predictive of myeloma patient outcomes. Here we directly investigate how MM cells affect the differentiation capacity and gene expression profiles of preadipocytes and bone marrow MSCs. Our studies reveal that MM.1S cells cause a marked decrease in lipid accumulation in differentiating 3T3-L1 cells. Also, MM.1S cells or MM.1S-conditioned media altered gene expression profiles of both 3T3-L1 and mouse bone marrow MSCs. 3T3-L1 cells exposed to MM.1S cells before adipogenic differentiation displayed gene expression changes leading to significantly altered pathways involved in steroid biosynthesis, the cell cycle, and metabolism (oxidative phosphorylation and glycolysis) after adipogenesis. MM.1S cells induced a marked increase in 3T3-L1 expression of MM-supportive genes including Il-6 and Cxcl12 (SDF1), which was confirmed in mouse MSCs by qRT-PCR, suggesting a forward-feedback mechanism. In vitro experiments revealed that indirect MM exposure prior to differentiation drives a senescent-like phenotype in differentiating MSCs, and this trend was confirmed in MM-associated MSCs compared to MSCs from normal donors. In direct co-culture, human mesenchymal stem cells (hMSCs) exposed to MM.1S, RPMI-8226, and OPM-2 prior to and during differentiation, exhibited different levels of lipid accumulation as well as secreted cytokines. Combined, our results suggest that MM cells can inhibit adipogenic differentiation while stimulating expression of the senescence associated secretory phenotype (SASP) and other pro-myeloma molecules. This study provides insight into a novel way in which MM cells manipulate their microenvironment by altering the expression of supportive cytokines and skewing the cellular diversity of the marrow.


Sign in / Sign up

Export Citation Format

Share Document