scholarly journals Pulmonary toxicity, genotoxicity, and carcinogenicity evaluation of molybdenum, lithium, and tungsten: A review

Toxicology ◽  
2022 ◽  
pp. 153098
Author(s):  
Niels Hadrup ◽  
Jorid B. Sørli ◽  
Anoop K. Sharma
Author(s):  
David B. Warheit ◽  
Lena Achinko ◽  
Mark A. Hartsky

There is a great need for the development of a rapid and reliable bioassay to evaluate the pulmonary toxicity of inhaled particles. A number of methods have been proposed, including lung clearance studies, bronchoalveolar lavage analysis, and in vitro cytotoxicity tests. These methods are often limited in scope inasmuch as they measure only one dimension of the pulmonary response to inhaled, instilled or incubated dusts. Accordingly, a comprehensive approach to lung toxicity studies has been developed.To validate the method, rats were exposed for 6 hours or 3 days to various concentrations of either aerosolized alpha quartz silica (Si) or carbonyl iron (CI) particles. Cells and fluids from groups of sham and dust-exposed animals were recovered by bronchoalveolar lavage (BAL). Alkaline phosphatase, LDH and protein values were measured in BAL fluids at several time points postexposure. Cells were counted and evaluated for viability, as well as differential and cytochemical analysis. In addition, pulmonary macrophages (PM) were cultured and studied for morphology, chemotaxis, and phagocytosis by scanning electron microscopy.


2018 ◽  
Vol 4 (3) ◽  
pp. 26-34
Author(s):  
A. A. Okhlopkova ◽  
A. P., Vasilev ◽  
T. S. Struchkova ◽  
A. G. Alekseev ◽  
P. N. Grakovich

2018 ◽  
Author(s):  
Wentao Qin ◽  
Scott Donaldson ◽  
Dan Rogers ◽  
Lahcen Boukhanfra ◽  
Julien Thiefain ◽  
...  

Abstract Many semiconductor products are manufactured with mature technologies involving the uses of aluminum (Al) lines and tungsten (W) vias. High resistances of the vias were sometimes observed only after electrical or thermal stress. A layer of Ti oxide was found on such a via. In the wafer processing, the post W chemical mechanical planarization (WCMP) cleaning left residual W oxide on the W plugs. Ti from the overlaying metal line spontaneously reduced the W oxide, through which Ti oxide formed. Compared with W oxide, the Ti oxide has a larger formation enthalpy, and the valence electrons of Ti are more tightly bound to the O ion cores. As a result, the Ti oxide is more resistive than the W oxide. Consequently, the die functioned well in the first test in the fab, but the via resistance increased significantly after a thermal stress, which led to device failure in the second test. The NH4OH concentration was therefore increased to more effectively remove residual W oxide, which solved the problem. The thermal stress had prevented the latent issue from becoming a more costly field failure.


Sign in / Sign up

Export Citation Format

Share Document