chemical mechanical planarization
Recently Published Documents


TOTAL DOCUMENTS

873
(FIVE YEARS 130)

H-INDEX

37
(FIVE YEARS 5)

Author(s):  
Zifeng Ni ◽  
Guomei Chen ◽  
Laijun Xu ◽  
Ping Zhang ◽  
Mengjiao Dai ◽  
...  

Abstract Ceria-coated silica (SiO2/CeO2) composite abrasives were prepared through a novel homogeneous precipitation method using commercial silica (SiO2) sol as the silicon resource and cerium nitrate (Ce(NO3)3) and hexamethylenetetramine (HMT) aqueous mixtures as coating precursors. The phase composition, nano-topography, size distribution, and chemical structure of as-prepared particles were characterized by X-ray diffraction, transmission electron microscopy, Zetasizer Nano ZS90 and Fourier infrared spectra. In addition, the possible coating mechanism was discussed. Then, chemical mechanical planarization behaviors of SiO2 sol, ceria (CeO2) sol, and the novel abrasives and on Si-face (0001) 6H-SiC were investigated by atomic force microscopy. The results indicated that the composite particles were mono-dispersed nano-spheres composed of amorphous SiO2 core and cubic fluorite CeO2 shell, possessing complete core-shell structure and particle size of about 110 nm. CeO2 shell (10 nm) grew on the surface of SiO2 core by formation of Ce-O-Si chemical bonds, forming stable core-shell structure. SiO2/CeO2 composite abrasives provided an exponentially high material remove rate (MRR) of 1207 nm/h and an impressive surface finish with roughness average (Ra) 0.216 nm due to its active chemical property and unique structure.


Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3296
Author(s):  
Seong-In Kim ◽  
Gi-Ppeum Jeong ◽  
Seung-Jae Lee ◽  
Jong-Chan Lee ◽  
Jun-Myeong Lee ◽  
...  

For scaling-down advanced nanoscale semiconductor devices, tungsten (W)-film surface chemical mechanical planarization (CMP) has rapidly evolved to increase the W-film surface polishing rate via Fenton-reaction acceleration and enhance nanoscale-abrasive (i.e., ZrO2) dispersant stability in the CMP slurry by adding a scavenger to suppress the Fenton reaction. To enhance the ZrO2 abrasive dispersant stability, a scavenger with protonate-phosphite ions was designed to suppress the time-dependent Fenton reaction. The ZrO2 abrasive dispersant stability (i.e., lower H2O2 decomposition rate and longer H2O2 pot lifetime) linearly and significantly increased with scavenger concentration. However, the corrosion magnitude on the W-film surface during CMP increased significantly with scavenger concentration. By adding a scavenger to the CMP slurry, the radical amount reduction via Fenton-reaction suppression in the CMP slurry and the corrosion enhancement on the W-film surface during CMP performed that the W-film surface polishing rate decreased linearly and notably with increasing scavenger concentration via a chemical-dominant CMP mechanism. Otherwise, the SiO2-film surface polishing rate peaked at a specific scavenger concentration via a chemical and mechanical-dominant CMP mechanism. The addition of a corrosion inhibitor with a protonate-amine functional group to the W-film surface CMP slurry completely suppressed the corrosion generation on the W-film surface during CMP without a decrease in the W- and SiO2-film surface polishing rate.


Author(s):  
Yue Li ◽  
chenwei wang ◽  
Jianwei Zhou ◽  
Yuanshen Cheng ◽  
晨 续 ◽  
...  

Abstract Chemical mechanical planarization (CMP) is a critical process for smoothing and polishing the surfaces of various material layers in semiconductor device fabrication. The applications of silicon dioxide films are shallow trench isolation, an inter-layer dielectric, and emerging technologies such as CMOS Image Sensor. In this study, the effect of various chemical additives on the removal rate of silicon dioxide film using colloidal silica abrasive during CMP was investigated. The polishing results show that the removal rate of silicon dioxide film first increased and then decreased with an increasing concentration of K+, pH, and abrasive size. The removal rate of silicon dioxide film increased linearly as the abrasive concentration increased. The influence mechanisms of various additives on the removal rate of silicon dioxide film were investigated by constructing simple models and scanning electron microscopy. Further, the stable performance of the slurry was achieved due to the COO- chains generated by poly(acrylamide) hydrolysis weaken the attraction between abrasives. High-quality wafer surfaces with low surface roughness were also thus achieved. The desirable and simple ingredient slurry investigated in this study can effectively enhance the planarization performance, for example, material removal rates and wafer surface roughness.


2021 ◽  
Vol 11 (22) ◽  
pp. 10872
Author(s):  
Gi-Ppeum Jeong ◽  
Young-Hye Son ◽  
Jun-Seong Park ◽  
Pil-Su Kim ◽  
Man-Hyup Han ◽  
...  

A Fenton reaction and a corrosion inhibition strategy were designed for enhancing the polishing rate and achieving a corrosion-free Ge1Sb4Te5 film surface during chemical–mechanical planarization (CMP) of three-dimensional (3D) cross-point phase-change random-access memory (PCRAM) cells and 3D cross-point synaptic arrays. The Fenton reaction was conducted with 1,3-propylenediamine tetraacetic acid, ferric ammonium salt (PDTA–Fe) and H2O2. The chemical oxidation degree of GeO2, Sb2O3, and TeO2 evidently increased with the PDTA–Fe concentration in the CMP slurry, such that the polishing rate of the Ge1Sb4Te5 film surface linearly increased with the PDTA–Fe concentration. The addition of a corrosion inhibitor having protonated amine functional groups in the CMP slurry remarkably suppressed the corrosion degree of the Ge1Sb4Te5 film surface after CMP; i.e., the corrosion current of the Ge1Sb4Te5 film surface linearly decreased as the corrosion inhibitor concentration increased. Thus, the proposed Fenton reaction and corrosion inhibitor in the Ge1Sb4Te5 film surface CMP slurry could achieve an almost recess-free Ge1Sb4Te5 film surface of the confined-PCRAM cells, having an aspect ratio of 60-nm-height to 4-nm-diameter after CMP.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kangchun Lee ◽  
Seho Sun ◽  
Ganggyu Lee ◽  
Gyeonghui Yoon ◽  
Donghyeok Kim ◽  
...  

AbstractIn this report, the galvanic corrosion inhibition between Cu and Ru metal films is studied, based on bonding orbital theory, using pyridinecarboxylic acid groups which show different affinities depending on the electron configuration of each metal resulting from a π-backbonding. The sp2 carbon atoms adjacent to nitrogen in the pyridine ring provide π-acceptor which forms a complex with filled d-orbital of native oxides on Cu and Ru metal film. The difference in the d-orbital electron density of each metal oxide leads to different π-backbonding strength, resulting in dense or sparse adsorption on native metal oxides. The dense adsorption layer is formed on native Cu oxide film due to the full-filled d-orbital electrons, which effectively suppresses anodic reaction in Cu film. On the other hand, only a sparse adsorption layer is formed on native Ru oxide due to its relatively weak affinity between partially filled d-orbital and pyridine groups. The adsorption behaviour is investigated through interfacial interaction analysis and electrochemical interaction evaluation. Based on this finding, the galvanic corrosion behaviour between Cu and Ru during chemical mechanical planarization (CMP) processing has been controlled.


Sign in / Sign up

Export Citation Format

Share Document