Photorhabdus asymbiotica toxin PaTox: A new bacterial toxin catalyzing tyrosine glycosylation of Rho and deamidation of Gq and Gi proteins

Toxicon ◽  
2016 ◽  
Vol 116 ◽  
pp. 74
Author(s):  
K. Aktories ◽  
T. Jank
Keyword(s):  
2013 ◽  
Vol 20 (11) ◽  
pp. 1273-1280 ◽  
Author(s):  
Thomas Jank ◽  
Xenia Bogdanović ◽  
Christophe Wirth ◽  
Erik Haaf ◽  
Michael Spoerner ◽  
...  
Keyword(s):  

10.2741/s263 ◽  
2012 ◽  
Vol S4 (1) ◽  
pp. 216-225 ◽  
Author(s):  
Darja Kanduc
Keyword(s):  

2020 ◽  
Vol 45 (4) ◽  
pp. 351-357
Author(s):  
Bilge Özerman Edis ◽  
Muhammet Bektaş ◽  
Rüstem Nurten

AbstractObjectivesCardiac damage in patient with diphtheritic myocarditis is reported as the leading cause of mortality. Diphtheria toxin (DTx) is a well-known bacterial toxin inducing various cytotoxic effects. Mainly, catalytic fragment inhibits protein synthesis, induces cytotoxicity, and depolymerizes actin filaments. In this study, we aimed to demonstrate the extent of myofibrillar damage under DTx treatment to porcine cardiac tissue samples.MethodsTissue samples were incubated with DTx for 1–3 h in culture conditions. To analyze whole toxin (both fragments) distribution, conjugation of DTx with FITC was performed. Measurements were carried out with fluorescence spectrophotometer before and after dialysis. Immunofluorescence microscopy was used to show localization of DTx-FITC (15 nM) on cardiac tissue incubated for 2 h. Ultrastructural characterization of cardiac tissue samples treated with DTx (15 or 150 nM) was performed with transmission electron microscopy.ResultsDTx exerts myofibrillar disorganization. Myofilament degeneration, mitochondrial damage, vacuolization, and abundant lipid droplets were determined with 150 nM of DTx treatment.ConclusionsThis finding is an addition to depolymerization of actin filaments as a result of the DTx-actin interactions in in vitro conditions, indicating that myofilament damage can occur with DTx directly besides protein synthesis inhibition. Ultrastructural results support the importance of filamentous actin degeneration at diphtheritic myocarditis.


2021 ◽  
Vol 9 (4) ◽  
pp. 851
Author(s):  
Inmaculada Moreno-Córdoba ◽  
Wai-Ting Chan ◽  
Concha Nieto ◽  
Manuel Espinosa

Type II bacterial toxin-antitoxin (TA) systems are found in most bacteria, archaea, and mobile genetic elements. TAs are usually found as a bi-cistronic operon composed of an unstable antitoxin and a stable toxin that targets crucial cellular functions like DNA supercoiling, cell-wall synthesis or mRNA translation. The type II RelBE system encoded by the pathogen Streptococcus pneumoniae is highly conserved among different strains and participates in biofilm formation and response to oxidative stress. Here, we have analyzed the participation of the RelB antitoxin and the RelB:RelE protein complex in the self-regulation of the pneumococcal relBE operon. RelB acted as a weak repressor, whereas RelE performed the role of a co-repressor. By DNA footprinting experiments, we show that the proteins bind to a region that encompasses two palindromic sequences that are located around the −10 sequences of the single promoter that directs the synthesis of the relBE mRNA. High-resolution footprinting assays showed the distribution of bases whose deoxyriboses are protected by the bound proteins, demonstrating that RelB and RelB:RelE contacted the DNA backbone on one face of the DNA helix and that these interactions extended beyond the palindromic sequences. Our findings suggest that the binding of the RelBE proteins to its DNA target would lead to direct inhibition of the binding of the host RNA polymerase to the relBE promoter.


Sign in / Sign up

Export Citation Format

Share Document