Rosiglitazone promotes cardiac hypertrophy and alters chromatin remodeling in isolated cardiomyocytes

2017 ◽  
Vol 280 ◽  
pp. 151-158 ◽  
Author(s):  
Lama Fawaz Pharaon ◽  
Naglaa Fathi El-Orabi ◽  
Muhammad Kunhi ◽  
Nadya Al Yacoub ◽  
Salma Mahmoud Awad ◽  
...  
2013 ◽  
Vol 113 (suppl_1) ◽  
Author(s):  
Salma Mahmoud ◽  
Muhammad Kunhi ◽  
Gillian H Little ◽  
Yan Bai ◽  
Woojin An ◽  
...  

Background and Purpose: Calcium/calmodulin-dependent protein kinase II (CaMKII) is a ubiquitous serine/threonine kinase implicated in pathological events such as cardiac hypertrophy. In this study we investigated the role of a specific nuclear isoform of CaMKII in chromatin remodeling and in transcriptional regulation in cardiac muscle. Methods: Comprehensive experimental approaches performed in primary cardiomyocyte cultures were used including chromatin immunoprecipitation assays (ChIP), q-PCR, chromatin remodeling assays, in vitro phosphorylation/transcription assays, production of recombinant adenovirus, siRNA technology, fluorescence microscopy and mass spectrometry. Results: We found that CaMKIIδB targets specific components of chromatin during cardiac hypertrophy and binds to nucleosomes through its association domain in a cooperative model. CaMKIIδB also increased chromatin relaxation, and this action was dependent on its kinase activity. The observation that CaMKIIδB interacts with chromatin suggested to us that histones maybe novel substrates of the kinase in cardiac muscle. To test this hypothesis, we performed in vitro kinase assays and found that histone H3 is a bona fide CaMKIIδB substrate and Ser-10 appears to be a predominant phosphorylation site. Increased histone H3 Ser-10 phosphorylation was observed following hypertrophic stimulation and was not associated with cellular proliferation, whereas depletion of CaMKIIδB significantly reduced histone H3 Ser-10 phosphorylation in primary cardiomyocytes. Interestingly, we found that H3 S10 phosphorylation and recruitment of CaMKIIδB occur at promoters of fetal cardiac genes. To establish the functional link between H3 phosphorylation by CaMKIIδB, chromatin remodeling and transcription activation, we developed an in vitro transcription system and using it we found that CaMKIIδB increased chromatin accessibility and mediated transcription of the Mef2 transcription factor. Conclusion: Taken together, these findings highlight a new role of CaMKIIδB as relevant histone H3 kinase and link for the first time epigenetic changes by CaMKII to cardiac hypertrophy.


2019 ◽  
Vol 125 (Suppl_1) ◽  
Author(s):  
Salma M Awad ◽  
Esra Zahid ◽  
Sarah Al-Shalan ◽  
Ayodele Alaiya ◽  
Qamar Al-Tinawi ◽  
...  

2020 ◽  
Vol 9 (22) ◽  
Author(s):  
Dian‐Hong Zhang ◽  
Jie‐Lei Zhang ◽  
Zhen Huang ◽  
Lei‐Ming Wu ◽  
Zhong‐Min Wang ◽  
...  

Background Cardiac hypertrophy (CH) is a physiological response that compensates for blood pressure overload. Under pathological conditions, hypertrophy can progress to heart failure as a consequence of the disorganized growth of cardiomyocytes and cardiac tissue. USP10 (ubiquitin‐specific protease 10) is a member of the ubiquitin‐specific protease family of cysteine proteases, which are involved in viral infection, oxidative stress, lipid drop formation, and heat shock. However, the role of USP10 in CH remains largely unclear. Here, we investigated the roles of USP10 in CH. Methods and Results Cardiac‐specific USP10 knockout (USP10‐CKO) mice and USP10‐transgenic (USP10‐TG) mice were used to examined the role of USP10 in CH following aortic banding. The specific functions of USP10 were further examined in isolated cardiomyocytes. USP10 expression was increased in murine hypertrophic hearts following aortic banding and in isolated cardiomyocytes in response to hypertrophic agonist. Mice deficient in USP10 in the heart exhibited exaggerated cardiac hypertrophy and fibrosis following pressure overload stress, which resulted in worsening of cardiac contractile function. In contrast, cardiac overexpression of USP10 protected against pressure overload‐induced maladaptive CH. Mechanistically, we demonstrated that USP10 activation and interaction with Sirt6 in response to angiotensin II led to a marked increase in the ubiquitination of Sirt6 and resulted in Akt signaling downregulation and attenuation of cardiomyocyte hypertrophy. Accordingly, inactivation of USP10 reduced Sirt6 abundance and stability and diminished Sirt6‐induced downstream signaling in cardiomyocytes. Conclusions USP10 functions as a Sirt6 deubiquitinase that induces cardiac myocyte hypertrophy and triggers maladaptive CH.


2015 ◽  
Vol 44 (6) ◽  
pp. 2538-2553 ◽  
Author(s):  
Huanhuan Cui ◽  
Jenny Schlesinger ◽  
Sophia Schoenhals ◽  
Martje Tönjes ◽  
Ilona Dunkel ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document