Abstract 371: Chromatin Remodeling Mechanisms by Bromodomain PHD Finger Transcription Factor in Cardiac Hypertrophy and Heart Failure

2019 ◽  
Vol 125 (Suppl_1) ◽  
Author(s):  
Salma M Awad ◽  
Esra Zahid ◽  
Sarah Al-Shalan ◽  
Ayodele Alaiya ◽  
Qamar Al-Tinawi ◽  
...  
2010 ◽  
Vol 298 (6) ◽  
pp. H2082-H2092 ◽  
Author(s):  
Yonggang Liu ◽  
Man Yu ◽  
Ling Wu ◽  
Michael T. Chin

Cardiac hypertrophy is a common response to hemodynamic stress in the heart and can progress to heart failure. To investigate whether the transcription factor cardiovascular basic helix-loop-helix factor 1/hairy/enhancer of split related with YRPW motif 2 (CHF1/Hey2) influences the development of cardiac hypertrophy and progression to heart failure under conditions of pressure overload, we performed aortic constriction on 12-wk-old male wild-type (WT) and heterozygous (HET) mice globally underexpressing CHF1/Hey2. After aortic banding, WT and HET mice showed increased cardiac hypertrophy as measured by gravimetric analysis, as expected. CHF1/Hey2 HET mice, however, demonstrated a greater increase in the ventricular weight-to-body weight ratio compared with WT mice ( P < 0.05). Echocardiographic measurements showed a significantly decreased ejection fraction compared with WT mice ( P < 0.05). Histological examination of Masson trichrome-stained heart tissue demonstrated extensive fibrosis in HET mice compared with WT mice. TUNEL staining demonstrated increased apoptosis in HET hearts ( P < 0.05). Exposure of cultured neonatal myocytes from WT and HET mice to H2O2 and tunicamycin, known inducers of apoptosis that work through different mechanisms, demonstrated significantly increased apoptosis in HET cells compared with WT cells ( P < 0.05). Expression of Bid, a downstream activator of the mitochondrial death pathway, was expressed in HET hearts at increased levels after aortic banding. Expression of GATA4, a transcriptional activator of cardiac hypertrophy, was also increased in HET hearts, as was phosphorylation of GATA4 at Ser105. Our findings demonstrate that CHF1/Hey2 expression levels influence hypertrophy and the progression to heart failure in response to pressure overload through modulation of apoptosis and GATA4 activity.


2006 ◽  
Vol 34 (6) ◽  
pp. 1138-1140 ◽  
Author(s):  
A.J. Bingham ◽  
L. Ooi ◽  
I.C. Wood

Cardiac hypertrophy is an increase in the size of cardiac myocytes to generate increased muscle mass, usually driven by increased workload for the heart. Although important during postnatal development and an adaptive response to physical exercise, excessive hypertrophy can result in heart failure. One characteristic of hypertrophy is the re-expression of genes that are normally only expressed during foetal heart development. Although the involvement of these changes in gene expression in hypertrophy has been known for some years, the mechanisms involved in this re-expression are only now being elucidated and the transcription factor REST (repressor element 1-silencing transcription factor) has been identified as an important repressor of hypertrophic gene expression.


2014 ◽  
Vol 115 (suppl_1) ◽  
Author(s):  
Hsiao C Wang ◽  
Lillianne G Harris ◽  
James C Chou ◽  
Santhosh Mani ◽  
Donald Menick

Introduction: Alterations in expression and activity of different genes have been implicated in the pathogenesis of heart failure. Our lab has shown that HDAC-repressor complexes play a critical role in the upregulation Sodium Calcium Exchanger ( Ncx1) and HDAC inhibition causes changes that attenuated cardiac remodeling during cardiac hypertrophy and heart failure. Thus, treatment with HDAC inhibitors has been proposed as a potential strategy for treatment of cardiac hypertrophy and heart failure. HDAC inhibitors repress deacetylase activity but we propose that they also affect HDAC confirmation and interaction with other protein factors. We hypothesize that HDAC inhibitors affect the stability of the co-repressor complex with specific transcription factors and that this effect is dependent on the transcription factor. Results: Inhibition of HDACs in adult cardiomyocytes results in the greater stabilization of HDACs with co-repressor molecules that were recruited to the NCX1 promoter through Nkx2.5 transcription factor. HDAC class I specific inhibitor, MS 275 demonstrated stronger association between HDACs and co-repressors while other Class I inhibitors, PD106 and BML 210 failed on showing this phenomenal. The results suggested that class I HDACs inhibitors may affect formations of HDAC-complex via alternated active site interactions other than chelating with zinc binding domain. These results compliment ChIP experiments which also demonstrate the different recruitments of Sin3a at the proximal promoter of NCX1. In vivo analysis on HDAC5 knockout mice reveal that the Sin3a-HDAC1/2 repressor complex is not recruited to the Ncx1 promoter in the absence of HDAC5, indicating not only Class I HDAC but also Class II HDACs play an important role on HDAC-complex formation. Conclusions: This work gives insight into part of the molecular mechanism of how HDAC inhibitors can affect the stability of the HDAC co-repressor complex in cardiac hypertrophy and heart failure. In addition, we demonstrated the Class IIa HDACs are required for the recruitment of the Sin3a/HDAC1/2 co-repressor complex to specific transcription factors on the target promoter.


2012 ◽  
Vol 111 (suppl_1) ◽  
Author(s):  
Thomas Thum ◽  
Shashi K Gupta ◽  
Ahmet Ucar ◽  
Jan Fiedler ◽  
Leon DeWindt ◽  
...  

Pathologic growth of cardiomyocytes and derailed autophagy are major determinants for the development of heart failure, one of the leading medical causes of mortality worldwide. Here, we show the microRNA (miRNA)-212/132 family to regulate hypertrophy and autophagy in cardiomyocytes. Hypertrophic stimuli lead to the upregulation of miR-212 and miR-132 expression in cardiomyocytes, which are both necessary and sufficient to drive the hypertrophic growth of cardiomyocytes. MiR-212/132 null mice are protected from pressure-overload induced heart failure, whereas cardiomyocyte-specific overexpression of the miR-212/132 family leads to pathological cardiac hypertrophy, heart failure and lethality in mice. Mechanistically, both miR-212 and miR-132 directly target the anti-hypertrophic and pro-autophagic FoxO3 transcription factor and overexpression of these miRNAs leads to hyperactivation of pro-hypertrophic calcineurin/NFAT signalling and impaired autophagic response upon starvation. Pharmacologic miRNA inhibition by antagomir injection rescues cardiac hypertrophy and heart failure in mice, offering a possible therapeutic approach for cardiac failure.


Molecules ◽  
2020 ◽  
Vol 26 (1) ◽  
pp. 53
Author(s):  
Jung Joo Yoon ◽  
Chan Ok Son ◽  
Hye Yoom Kim ◽  
Byung Hyuk Han ◽  
Yun Jung Lee ◽  
...  

Cardiac hypertrophy is a major risk factor for heart failure and leads to cardiovascular morbidity and mortality. Doxorubicin (DOX) is regarded as one of the most potent anthracycline antibiotic agents; however, its clinical usage has some limitations because it has serious cardiotoxic side effects such as dilated cardiomyopathy and congestive heart failure. Betulinic acid (BA) is a pentacyclic-cyclic lupane-type triterpene that has been reported to have anti-bacterial, anti-inflammatory, anti-vascular neogenesis, and anti-fibrotic effects. However, there is no study about its direct effect on DOX induced cardiac hypertrophy and apoptosis. The present study aims to investigate the effect of BA on DOX-induced cardiomyocyte hypertrophy and apoptosis in vitro in H9c2 cells. The H9c2 cells were stimulated with DOX (1 µM) in the presence or absence of BA (0.1–1 μM) and incubated for 24 h. The results of the present study indicated that DOX induces the increase cell surface area and the upregulation of hypertrophy markers including atrial natriuretic peptide (ANP), B-type natriuretic peptide (BNP), beta-myosin heavy chain (β-MHC), and Myosin Light Chain-2 (MLC2) in H9c2 cells. However, the pathological hypertrophic responses were downregulated after BA treatment. Moreover, phosphorylation of JNK, ERK, and p38 in DOX treated H9c2 cells was blocked by BA. As a result of measuring the change in ROS generation using DCF-DA, BA significantly inhibited DOX-induced the production of intracellular reactive oxygen species (ROS) when BA was treated at a concentration of over 0.1 µM. DOX-induced activation of GATA-4 and calcineurin/NFAT-3 signaling pathway were remarkably improved by pre-treating of BA to H9c2 cells. In addition, BA treatment significantly reduced DOX-induced cell apoptosis and protein expression levels of Bax and cleaved caspase-3/-9, while the expression of Bcl-2 was increased by BA. Therefore, BA can be a potential treatment for cardiomyocyte hypertrophy and apoptosis that lead to sudden heart failure.


Antioxidants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 931
Author(s):  
Anureet K. Shah ◽  
Sukhwinder K. Bhullar ◽  
Vijayan Elimban ◽  
Naranjan S. Dhalla

Although heart failure due to a wide variety of pathological stimuli including myocardial infarction, pressure overload and volume overload is associated with cardiac hypertrophy, the exact reasons for the transition of cardiac hypertrophy to heart failure are not well defined. Since circulating levels of several vasoactive hormones including catecholamines, angiotensin II, and endothelins are elevated under pathological conditions, it has been suggested that these vasoactive hormones may be involved in the development of both cardiac hypertrophy and heart failure. At initial stages of pathological stimuli, these hormones induce an increase in ventricular wall tension by acting through their respective receptor-mediated signal transduction systems and result in the development of cardiac hypertrophy. Some oxyradicals formed at initial stages are also involved in the redox-dependent activation of the hypertrophic process but these are rapidly removed by increased content of antioxidants in hypertrophied heart. In fact, cardiac hypertrophy is considered to be an adaptive process as it exhibits either normal or augmented cardiac function for maintaining cardiovascular homeostasis. However, exposure of a hypertrophied heart to elevated levels of circulating hormones due to pathological stimuli over a prolonged period results in cardiac dysfunction and development of heart failure involving a complex set of mechanisms. It has been demonstrated that different cardiovascular abnormalities such as functional hypoxia, metabolic derangements, uncoupling of mitochondrial electron transport, and inflammation produce oxidative stress in the hypertrophied failing hearts. In addition, oxidation of catecholamines by monoamine oxidase as well as NADPH oxidase activation by angiotensin II and endothelin promote the generation of oxidative stress during the prolonged period by these pathological stimuli. It is noteworthy that oxidative stress is known to activate metallomatrix proteases and degrade the extracellular matrix proteins for the induction of cardiac remodeling and heart dysfunction. Furthermore, oxidative stress has been shown to induce subcellular remodeling and Ca2+-handling abnormalities as well as loss of cardiomyocytes due to the development of apoptosis, necrosis, and fibrosis. These observations support the view that a low amount of oxyradical formation for a brief period may activate redox-sensitive mechanisms, which are associated with the development of cardiac hypertrophy. On the other hand, high levels of oxyradicals over a prolonged period may induce oxidative stress and cause Ca2+-handling defects as well as protease activation and thus play a critical role in the development of adverse cardiac remodeling and cardiac dysfunction as well as progression of heart failure.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Thanachai Methatham ◽  
Shota Tomida ◽  
Natsuka Kimura ◽  
Yasushi Imai ◽  
Kenichi Aizawa

AbstractIn heart failure (HF) caused by hypertension, the myocyte size increases, and the cardiac wall thickens. A low-molecular-weight compound called ICG001 impedes β-catenin-mediated gene transcription, thereby protecting both the heart and kidney. However, the HF-preventive mechanisms of ICG001 remain unclear. Hence, we investigated how ICG001 can prevent cardiac hypertrophy and fibrosis induced by transverse aortic constriction (TAC). Four weeks after TAC, ICG001 attenuated cardiac hypertrophy and fibrosis in the left ventricular wall. The TAC mice treated with ICG001 showed a decrease in the following: mRNA expression of brain natriuretic peptide (Bnp), Klf5, fibronectin, β-MHC, and β-catenin, number of cells expressing the macrophage marker CD68 shown in immunohistochemistry, and macrophage accumulation shown in flow cytometry. Moreover, ICG001 may mediate the substrates in the glycolysis pathway and the distinct alteration of oxidative stress during cardiac hypertrophy and HF. In conclusion, ICG001 is a potential drug that may prevent cardiac hypertrophy and fibrosis by regulating KLF5, immune activation, and the Wnt/β-catenin signaling pathway and inhibiting the inflammatory response involving macrophages.


2010 ◽  
Vol 90 (4) ◽  
pp. 520-530 ◽  
Author(s):  
Anasuya Gupta ◽  
Sudhiranjan Gupta ◽  
David Young ◽  
Biswajit Das ◽  
James McMahon ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document