isolated cardiomyocytes
Recently Published Documents


TOTAL DOCUMENTS

221
(FIVE YEARS 32)

H-INDEX

32
(FIVE YEARS 4)

2022 ◽  
Vol 162 ◽  
pp. 20-31
Author(s):  
Melinda Wojtkiewicz ◽  
Linda Berg Luecke ◽  
Chase Castro ◽  
Maria Burkovetskaya ◽  
Roneldine Mesidor ◽  
...  

2021 ◽  
Vol 154 (9) ◽  
Author(s):  
Luisina Chavarría ◽  
Axel Santander ◽  
Romina Cardozo ◽  
Florencia Savio ◽  
Nicolas Mujica ◽  
...  

Lead is a heavy metal pollutant that constitutes frequent exposomes. It is nonbiodegradable and has a nonsafe limit of exposure. It has multisystemic effects, and most of the cardiac effects have been discovered to be indirect. There are strong similarities between Ca2+ and Pb2+ in their chemistry. Because cardiac function is dramatically dependent in extracellular Ca2+, as well as in precise control of intracellular Ca2+, we tested if Pb2+ could antagonize Ca2+-dependent effects in a short amount of time. Acute exposure of isolated hearts showed a negative inotropic effect. In guinea pig isolated cardiomyocytes loaded with a Pb2+-specific dye (Leadmium green), our results showed that there was an associated increment in fluorescence related to extracellular stimulation blocked by 1–5 µM DHP. Calcium currents were partially blocked by extracellular Pb2+, though currents seemed to last longer after a fast inactivation. Charge movement from gating currents was slightly hastened over time, giving an appearance of a slight reduction in the Cav1.2 gating currents. Action potentials were prolonged in Pb2+ compared with Ca2+. In isolated cardiomyocytes loaded with Ca2+-sensitive dyes, Ca2+ variations promoted by extracellular stimuli were affected in space/time. As Pb2+ could interfere with Ca2+-sensitive dyes, we measured contraction of isolated cardiomyocytes under extracellular stimuli in Pb2+. In both Ca2+ dye fluorescence and contractions, Pb2+ disorganizes the pattern of contraction and intracellular Ca2+ homeostasis. Our results suggest that (1) Pb2+ enters to cardiomyocytes through Cav1.2 channels, and (2) once it enters the cell, Pb2+ may substitute Ca2+ in Ca2+-binding proteins. In addition to these direct mechanisms related to Pb2+ competition with Ca2+-binding sites, we cannot discard a direct contribution of Pb2+ redox properties.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ahmad Salimi ◽  
Zhaleh Jamali ◽  
Mohammad Shabani

Oxidative stress and mitochondrial dysfunction are involved in the mechanisms of cardiac toxicity induced by aluminum phosphide (AlP). AlP-induced cardiotoxicity leads to cardiomyocyte death, cardiomyopathy, cardiac dysfunction, and eventually severe heart failure and death. Importantly, protecting cardiomyocytes from death resulting from AlP is vital for improving survival. It has been reported that flavonoids such as myricetin (Myr) act as modifiers of mitochondrial function and prevent mitochondrial damage resulting from many insults and subsequent cell dysfunction. In this study, the ameliorative effect of Myr, as an important antioxidant and mitochondrial protective agent, was investigated in cardiomyocytes and mitochondria isolated from rat heart against AlP-induced toxicity, oxidative stress, and mitochondrial dysfunction. Treatment of AlP (20 μg/ml) significantly increased cytotoxicity; reduced glutathione (GSH) depletion, cellular reactive oxygen species (ROS) formation, malondialdehyde (MDA) level, ATP depletion, caspase-3 activation, mitochondrial membrane potential (ΔΨm) collapse, and lysosomal dysfunction; and decreased the activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) in intact cardiomyocytes. Also, treatment of AlP (20 μg/ml) significantly increased mitochondrial dysfunction and swelling in isolated mitochondria. Myr (80 µM) appeared to ameliorate AlP-induced cytotoxicity in isolated cardiomyocytes; significantly lessened the AlP-stimulated intracellular ROS and MDA production and depletion of GSH; and increased the activities of SOD, CAT, and GSH-Px. Furthermore, Myr (40 and 80 µM) lowered AlP-induced lysosomal/mitochondrial dysfunction, ATP depletion, and caspase-3 activation. In the light of these findings, we concluded that Myr through antioxidant potential and inhibition of mitochondrial permeability transition (MPT) pore exerted an ameliorative role in AlP-induced toxicity in isolated cardiomyocytes and mitochondria, and it would be valuable to examine its in vivo effects.


2021 ◽  
pp. 096032712110532
Author(s):  
A Salimi ◽  
S Atashbar ◽  
M Shabani

Background: Mitochondria are the main target organelles through which drugs and chemicals exert their toxic effect on cardiomyocytes. The mitochondria-related mechanisms of celecoxib-induced cardiotoxicity have been extensively studied. Accumulated evidence shows natural molecules targeting mitochondria have proven to be effective in preventing cardiotoxicity. Purpose: In the present study, we examined the ameliorative effect of gallic acid (GA) against celecoxib-induced cellular and mitochondrial toxicity in isolated cardiomyocytes and mitochondria. Research Design: The isolated cardiomyocytes and mitochondria were divided into various group, namely, control, celecoxib, celecoxib + GA (10, 50, and 100 µM). Several cellular and mitochondrial parameters such as cell viability, lipid peroxidation, succinate dehydrogenase (SDH) activity, reactive oxygen species (ROS) formation, mitochondrial membrane potential (MMP) collapse, and mitochondrial swelling were assessed in isolated cardiomyocytes and mitochondria. Results: Our results showed that administration of celecoxib (16 µg/ml) induced cytotoxicity and mitochondrial dysfunction at 6 h and 1 h, respectively, which is associated with lipid peroxidation intact cardiomyocytes, mitochondrial ROS formation, MMP collapse, and mitochondrial swelling. The cardiomyocytes and mitochondria treated with celecoxib + GA (10, 50, and 100 µM) significantly and dose-dependently restore the altered levels of cellular and mitochondrial parameters. Conclusions: We concluded that GA through antioxidant potential and inhibition of mitochondrial permeability transition (MPT) pore exerted ameliorative role in celecoxib-induced toxicity in isolated cardiomyocytes and mitochondria. The data of the current study suggested that GA supplementation may reduce celecoxib-induced cellular and mitochondrial toxicity during exposure and may provide a potential prophylactic and defensive candidate for coxibs-induced mitochondrial dysfunction, oxidative stress, and cardiotoxicity.


2021 ◽  
Author(s):  
cuilan hou ◽  
Xunwei jiang ◽  
Qingzhu Qiu ◽  
Junmin Zheng ◽  
Shujia Lin ◽  
...  

Catecholaminergic polymorphic ventricular tachycardia (CPVT) has been considered as one of the most important causes of children's sudden cardiac death. Mutations in the genes for RyR2 and CASQ2, two mainly subtypes of CPVT, have been identified. However, the mutation in the gene of TECRL was rarely reported, which could be another genetic cause of CPVT. We evaluated myocardial contractility, electrophysiology, calcium handling in Tecrl knockout (Tecrl KO) mice and human induced pluripotent stem cell-derived cardiomyocytes. Immediately after epinephrine plus caffeine injection, Tecrl KO mice showed much more multiple premature ventricular beats and ventricular tachycardia. The Tecrl KO mice demonstrate CPVT phenotypes. Mechanistically, intracellular calcium amplitude was reduced, while time to baseline of 50 was increased in acute isolated cardiomyocytes. RyR2 protein levels decreased significantly upon cycloheximide treatment in TECRL deficiency cardiomyocytes. Overexpression of TECRL and KN93 can partially reverse cardiomyocytes calcium dysfunction, and this is p-CaMKII/CaMKII dependent. Therefore, a new CPVT mouse model was constructed. We propose a previously unrecognized mechanism of TECRL and provide support for the therapeutic targeting of TECRL in treating CPVT


2021 ◽  
Vol 129 (Suppl_1) ◽  
Author(s):  
Satvik Mareedu ◽  
Nadezhda Fefelova ◽  
Lai-hua Xie ◽  
Gopal J Babu

Rationale & Hypothesis: Sarcolipin (SLN), an inhibitor of sarco/endoplasmic reticulum Ca 2+ ATPase (SERCA) is abnormally high and enriched in the mitochondrial associated membrane (MAM) fractions of dystrophic hearts. We, therefore, hypothesized that in the dystrophic cardiomyocytes, SLN upregulation causes abnormal elevation of intracellular Ca 2+ (Ca 2+ i ) including Ca 2+ mishandling in the MAM region, resulting in sustained elevation of mitochondrial Ca 2+ (Ca 2+ m ) , which in turn affects mitochondrial structure and function. Approach: We chose dystrophin mutant and utrophin deficient, mdx:utr -/- mice for our studies and generated SLN haploinsufficient mdx:utr -/- (mdx:utr -/- :sln +/- ) mice. Single-cell Ca 2+ transients and Ca 2+ m efflux were measured in isolated cardiomyocytes to determine Ca 2+ i handling and Ca 2+ m content, respectively. Mitochondrial membrane potential was assessed with membrane-permeant dyes in isolated cardiomyocytes followed by confocal imaging. Mitochondrial respiration was measured using Complex activity assays and Seahorse metabolic profiling in ventricular tissue lysates and isolated mitochondria respectively. Mitochondrial structure, number, and area were evaluated using electron micrographs. Results: Heterozygous deletion of the SLN gene normalized SLN expression and improved Ca 2+ i cycling and prevented Ca 2+ m overload in dystrophic cardiac myocytes. Furthermore, reducing SLN expression prevents loss of membrane potential and improves mitochondrial respiration in the dystrophic cardiac myocytes. Transmission electron microscopic analyses of the dystrophic heart revealed significant cristae loss in the mitochondria globally as well as in the MAM-associated mitochondria. On the other hand, the reduction in SLN expression prevents these changes. Conclusions: In conclusion, reduction in SLN expression preserves the SR-mitochondrial interface and restores the mitochondrial function by mitigating the Ca 2+ overload, membrane potential loss, and structural damage. These changes improve cardiac function and prevent the development of cardiomyopathy in mdx:utr -/- mice. Our findings suggest that SLN reduction could be a potential therapeutic strategy for the treatment of Duchenne muscular dystrophy and associated cardiomyopathy.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Inga Andriulė ◽  
Dalia Pangonytė ◽  
Mantė Almanaitytė ◽  
Vaiva Patamsytė ◽  
Milda Kuprytė ◽  
...  

AbstractThe expression of the channels-enzymes TRPM6 and TRPM7 in the human heart remains poorly defined, and TRPM6 is generally considered not to be expressed in cardiomyocytes. We examined their expression at protein and mRNA levels using right atrial samples resected from patients (n = 72) with or without ischemic heart disease (IHD) and samples from all chamber walls of explanted human hearts (n = 9). TRPM6 and TRPM7 proteins were detected using immunofluorescence on isolated cardiomyocytes, ELISA on tissue homogenates, and immunostaining of cardiac tissue, whereas their mRNAs were detected by RT-qPCR. Both TRPM6 and TRPM7 were present in all chamber walls, with TRPM7 being more abundant. TRPM6 was co-expressed with TRPM7. The expression levels were dependent on cell incubation conditions (presence or absence of divalent cations, pH of the extracellular milieu, presence of TRP channel inhibitors 2-aminoethoxydiphenyl-borate and carvacrol). These drugs reduced TRPM7 immunofluorescence but increased that of TRPM6. TRPM6 and TRPM7 expression was increased in tissues from IHD patients. This is the first demonstration of the presence and co-expression of TRPM6 and TRPM7 in cardiomyocytes from all chamber walls of the human heart. The increased TRPM6 and TRPM7 expression in IHD suggests that the chanzymes are involved in the pathophysiology of the disease.


2021 ◽  
pp. 096032712110228
Author(s):  
AA Hafez ◽  
Z Jamali ◽  
S Samiei ◽  
S Khezri ◽  
A Salimi

Doxorubicin (DOX) is an anticancer drug which is used for treatment of several types of cancers. But the clinical use of doxorubicin is limited because of its cardiotoxicity and cardiomyopathy. Mitochondrial-dependent oxidative stress and cardiac inflammation appear to be involved in doxorubicin-induced cardiotoxicity. Betanin as a bioactive compound in Beetroot ( Beta vulgaris L.) displays anti-radical, antioxidant gene regulatory and cardioprotective activities. In this current study, we investigated the protective effect of betanin on doxorubicin-induced cytotoxicity and mitochondrial-dependent oxidative stress in isolated cardiomyocytes and mitochondria. Isolated cardiomyocytes and mitochondria were treated with three concentrations of betanin (1, 5 and 10 µM) and doxorubicin (3.5 µM) for 6 h. The parameters of cellular and mitochondrial toxicity were analyzed using biochemical and flow cytometric methods. Our results showed a significant toxicity in isolated cardiomyocytes and mitochondria in presence of doxorubicin which was related to reactive oxygen species (ROS) formation, increase in malondialdehyde (MDA), increase in oxidation of GSH to GSSG, lysosomal/mitochondrial damages and mitochondrial swelling. While betanin pretreatment reverted doxorubicin-induced cytotoxicity and oxidative stress in isolated cardiomyocytes and mitochondria. These results suggest that betanin elicited a typical protective effect on doxorubicin-induced cytotoxicity and oxidative stress. It is possible that betanin could be used as a useful adjuvant in combination with doxorubicin chemotherapy for reduction of cardiotoxicity and cardiomyopathy.


2021 ◽  
Vol 153 (7) ◽  
Author(s):  
Andrew K. Coleman ◽  
Humberto C. Joca ◽  
Guoli Shi ◽  
W. Jonathan Lederer ◽  
Christopher W. Ward

Microtubules tune cytoskeletal stiffness, which affects cytoskeletal mechanics and mechanotransduction of striated muscle. While recent evidence suggests that microtubules enriched in detyrosinated α-tubulin regulate these processes in healthy muscle and increase them in disease, the possible contribution from several other α-tubulin modifications has not been investigated. Here, we used genetic and pharmacologic strategies in isolated cardiomyocytes and skeletal myofibers to increase the level of acetylated α-tubulin without altering the level of detyrosinated α-tubulin. We show that microtubules enriched in acetylated α-tubulin increase cytoskeletal stiffness and viscoelastic resistance. These changes slow rates of contraction and relaxation during unloaded contraction and increased activation of NADPH oxidase 2 (Nox2) by mechanotransduction. Together, these findings add to growing evidence that microtubules contribute to the mechanobiology of striated muscle in health and disease.


Sign in / Sign up

Export Citation Format

Share Document