scholarly journals Flight time prediction for fuel loading decisions with a deep learning approach

2021 ◽  
Vol 128 ◽  
pp. 103179
Author(s):  
Xinting Zhu ◽  
Lishuai Li

Newspaper articles offer us insights on several news. They can be one of many categories like sports, politics, Science and Technology etc. Text classification is a need of the day as large uncategorized data is the problem everywhere. Through this study, We intend to compare several algorithms along with data preprocessing approaches to classify the newspaper articles into their respective categories. Convolutional Neural Networks(CNN) is a deep learning approach which is currently a strong competitor to other classification algorithms like SVM, Naive Bayes and KNN. We hence intend to implement Convolutional Neural Networks - a deep learning approach to classify our newspaper articles, develop an understanding of all the algorithms implemented and compare their results. We also attempt to compare the training time, prediction time and accuracies of all the algorithms.


Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 494
Author(s):  
Erin McGowan ◽  
Vidita Gawade ◽  
Weihong (Grace) Guo

Physics-informed machine learning is emerging through vast methodologies and in various applications. This paper discovers physics-based custom loss functions as an implementable solution to additive manufacturing (AM). Specifically, laser metal deposition (LMD) is an AM process where a laser beam melts deposited powder, and the dissolved particles fuse to produce metal components. Porosity, or small cavities that form in this printed structure, is generally considered one of the most destructive defects in metal AM. Traditionally, computer tomography scans measure porosity. While this is useful for understanding the nature of pore formation and its characteristics, purely physics-driven models lack real-time prediction ability. Meanwhile, a purely deep learning approach to porosity prediction leaves valuable physics knowledge behind. In this paper, a hybrid model that uses both empirical and simulated LMD data is created to show how various physics-informed loss functions impact the accuracy, precision, and recall of a baseline deep learning model for porosity prediction. In particular, some versions of the physics-informed model can improve the precision of the baseline deep learning-only model (albeit at the expense of overall accuracy).


2018 ◽  
Vol 6 (3) ◽  
pp. 122-126
Author(s):  
Mohammed Ibrahim Khan ◽  
◽  
Akansha Singh ◽  
Anand Handa ◽  
◽  
...  

2020 ◽  
Vol 17 (3) ◽  
pp. 299-305 ◽  
Author(s):  
Riaz Ahmad ◽  
Saeeda Naz ◽  
Muhammad Afzal ◽  
Sheikh Rashid ◽  
Marcus Liwicki ◽  
...  

This paper presents a deep learning benchmark on a complex dataset known as KFUPM Handwritten Arabic TexT (KHATT). The KHATT data-set consists of complex patterns of handwritten Arabic text-lines. This paper contributes mainly in three aspects i.e., (1) pre-processing, (2) deep learning based approach, and (3) data-augmentation. The pre-processing step includes pruning of white extra spaces plus de-skewing the skewed text-lines. We deploy a deep learning approach based on Multi-Dimensional Long Short-Term Memory (MDLSTM) networks and Connectionist Temporal Classification (CTC). The MDLSTM has the advantage of scanning the Arabic text-lines in all directions (horizontal and vertical) to cover dots, diacritics, strokes and fine inflammation. The data-augmentation with a deep learning approach proves to achieve better and promising improvement in results by gaining 80.02% Character Recognition (CR) over 75.08% as baseline.


Sign in / Sign up

Export Citation Format

Share Document