A multi-objective sustainable load planning model for intermodal transportation networks with a real-life application

Author(s):  
Adil Baykasoğlu ◽  
Kemal Subulan
Algorithms ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 38
Author(s):  
Amr Mohamed AbdelAziz ◽  
Louai Alarabi ◽  
Saleh Basalamah ◽  
Abdeltawab Hendawi

The wide spread of Covid-19 has led to infecting a huge number of patients, simultaneously. This resulted in a massive number of requests for medical care, at the same time. During the first wave of Covid-19, many people were not able to get admitted to appropriate hospitals because of the immense number of patients. Admitting patients to suitable hospitals can decrease the in-bed time of patients, which can lead to saving many lives. Also, optimizing the admission process can minimize the waiting time for medical care, which can save the lives of severe cases. The admission process needs to consider two main criteria: the admission time and the readiness of the hospital that will accept the patients. These two objectives convert the admission problem into a Multi-Objective Problem (MOP). Pareto Optimization (PO) is a common multi-objective optimization method that has been applied to different MOPs and showed its ability to solve them. In this paper, a PO-based algorithm is proposed to deal with admitting Covid-19 patients to hospitals. The method uses PO to vary among hospitals to choose the most suitable hospital for the patient with the least admission time. The method also considers patients with severe cases by admitting them to hospitals with the least admission time regardless of their readiness. The method has been tested over a real-life dataset that consisted of 254 patients obtained from King Faisal specialist hospital in Saudi Arabia. The method was compared with the lexicographic multi-objective optimization method regarding admission time and accuracy. The proposed method showed its superiority over the lexicographic method regarding the two criteria, which makes it a good candidate for real-life admission systems.


Author(s):  
Zuhayer Mahtab ◽  
Abdullahil Azeem ◽  
Syed Mithun Ali ◽  
Sanjoy Kumar Paul ◽  
Amir Mohammad Fathollahi-Fard

A test blueprint/test template, also known as the table of specifications, represents the structure of a test. It has been highly recommended in assessment textbook to carry out the preparation of a test with a test blueprint. This chapter focuses on modeling a dynamic test paper template using multi-objective optimization algorithm and makes use of the template in dynamic generation of examination test paper. Multi-objective optimization-based models are realistic models for many complex optimization problems. Modeling a dynamic test paper template, similar to many real-life problems, includes solving multiple conflicting objectives satisfying the template specifications.


Sign in / Sign up

Export Citation Format

Share Document