New in situ low-friction technology for diamond-like carbon coatings using surface discharge treatment in ambient air

2021 ◽  
pp. 107306
Author(s):  
Motoyuki Murashima ◽  
Shintaro Oyama ◽  
Hiroyuki Kousaka ◽  
Takayuki Tokoroyama ◽  
Woo-Young Lee ◽  
...  
2008 ◽  
Vol 17 (12) ◽  
pp. 2071-2074 ◽  
Author(s):  
Veli-Matti Tiainen ◽  
Antti Soininen ◽  
Esa Alakoski ◽  
Yrjö T. Konttinen

1998 ◽  
Vol 555 ◽  
Author(s):  
S. S. Rosenblum ◽  
Kevin L. Davis ◽  
James M. Tedesco

AbstractWe report on Raman studies of diamond-like carbon (DLC) films; in particular, we report on the instrumentation and methodology required for comparing Raman measurements taken on different Raman analyzers. Raman spectroscopy has taken on an increasingly important role in materials processing because of its capability of performing non-destructive, in situ characterization of thin films. In particular, noncrystalline carbon coatings have become ubiquitous as protective layers on everything from machine tools to hard disk drives. As tolerances on coating properties begin to play an important part in determining device failure, Raman spectroscopy has found ever greater application as a quality control/quality assurance tool. However, use of Raman as an analytical tool has been hampered by the inability to quantitatively compare spectra obtained with different Raman analyzers. By using automated, robust calibration protocols on both the wavelength and intensity axes, we have demonstrated cross-instrument calibration transfer of DLC films.


2003 ◽  
Author(s):  
Yoshiteru Yasuda ◽  
Makoto Kano ◽  
Yutaka Mabuchi ◽  
Sadayuki Abou

Author(s):  
E. Konca ◽  
Y. T. Cheng ◽  
A. T. Alpas

Magnetron sputtered non-hydrogenated diamond-like carbon (DLC) coatings were tested against Al, Cu and Ti pins using a vacuum pin-on-disc tribometer. The objective was to compare Al, Ti, and Cu transfer to DLC coatings in air (29% RH) and an inert atmosphere (argon). In argon, a significant amount of adhesion and material transfer occurred from the Al and Ti pins to the DLC coating surfaces inflicting severe damage to the coatings. Wear and material transfer of the DLC coating against Cu were negligible in argon. Compared to tests in argon, the tribological performance of the DLC coatings against Al and Ti improved significantly in ambient air. In contrast, the wear rate of the DLC coatings against Cu was much higher in ambient air compared to that in argon.


2009 ◽  
Vol 18 (5-8) ◽  
pp. 1035-1038 ◽  
Author(s):  
C. Corbella ◽  
M. Rubio-Roy ◽  
E. Bertran ◽  
M.C. Polo ◽  
E. Pascual ◽  
...  

Wear ◽  
2005 ◽  
Vol 259 (1-6) ◽  
pp. 795-799 ◽  
Author(s):  
E. Konca ◽  
Y.-T. Cheng ◽  
A.M. Weiner ◽  
J.M. Dasch ◽  
A.T. Alpas

Author(s):  
Motoyuki Murashima ◽  
Misato Maeda ◽  
Deng Xingrui ◽  
Noritsugu Umehara ◽  
Hiroyuki Kousaka

The present paper proposes a new treatment method for diamond-like carbon (DLC) coatings using electric discharge. DLC coatings exhibit excellent mechanical and tribological properties due to their unique carbonaceous structure. Several surface treatment methods were presented to achieve short running-in and low friction. However, in-situ surface treatment is needed to extend the life of machines and maintain their performance. Here, we propose an electric discharge treatment with a simple electrical circuit. As a result, the friction coefficient drastically drops from 0.3 to 0.11. Interestingly, the drop starts shortly after the discharge starts. Consequently, the running-in is shortened to about 6-m sliding compared to no discharge condition, which does not show any running-in more than 68-m sliding. Raman analysis reveals that a transfer layer on the ball surface is composed of carbonaceous material and the structure exhibits graphite-like characteristics. However, there is visible damage on the DLC surface. Another friction test shows a very low friction coefficient of 0.04 using a transfer layer-covered ball and a new DLC disk with a smooth surface. In conclusion, the combination of a transfer layer and smooth DLC surface is needed to exhibit excellent tribological performance, indicating the importance of less damage treatment. Next, pulse discharge treatment is demonstrated to achieve less damage to the DLC coating. As a result, the pulse discharge method reduces friction and surface damage. In conclusion, the proposed treatment methods using electric discharge not only show the potential for reducing friction, but also the feasibility of in-situ treatment during machine operation.


Author(s):  
K. Van Acker ◽  
K. Vercammen ◽  
A. Vanhulsel ◽  
J. Barriga ◽  
A. Arnsek ◽  
...  

The tribological behaviour of coated machine components lubricated with a biodegradable saturated ester and unsaturated ester oil has been studied. Different diamond-like carbon-based coatings (DLC) were selected as low friction coatings: pure DLC, Si-doped, Ti-doped and W-doped DLC. The performance of the studied ester oils has been compared with sunflower oil and mineral oil lubrication as reference. The oils were all additivated in the same way with conventional anti-wear (AW) and extreme pressure (EP) additives. Different tests have been performed: disc on disc, ball on disc and block on ring tests give an overview of the influence of different sliding modes. The effect of the lubricant on a coated system compared to the use of the coated system without lubrication is clear for the wear, but less obvious for the friction. It was found that DLC/DLC contacts lubricated with biodegradable lubricants show similar friction as steel/steel contacts. The effect of the different types of base oil is independent of the coating type. Additive activity which was clear in steel/steel contacts was not obvious in DLC/DLC contacts.


Sign in / Sign up

Export Citation Format

Share Document