Quantitative Analysis of Raman Spectra from Diamond Like Carbon: Calibration Transfer

1998 ◽  
Vol 555 ◽  
Author(s):  
S. S. Rosenblum ◽  
Kevin L. Davis ◽  
James M. Tedesco

AbstractWe report on Raman studies of diamond-like carbon (DLC) films; in particular, we report on the instrumentation and methodology required for comparing Raman measurements taken on different Raman analyzers. Raman spectroscopy has taken on an increasingly important role in materials processing because of its capability of performing non-destructive, in situ characterization of thin films. In particular, noncrystalline carbon coatings have become ubiquitous as protective layers on everything from machine tools to hard disk drives. As tolerances on coating properties begin to play an important part in determining device failure, Raman spectroscopy has found ever greater application as a quality control/quality assurance tool. However, use of Raman as an analytical tool has been hampered by the inability to quantitatively compare spectra obtained with different Raman analyzers. By using automated, robust calibration protocols on both the wavelength and intensity axes, we have demonstrated cross-instrument calibration transfer of DLC films.

Coatings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 729
Author(s):  
Chanida Puttichaem ◽  
Guilherme P. Souza ◽  
Kurt C. Ruthe ◽  
Kittipong Chainok

A novel, high throughput method to characterize the chemistry of ultra-thin diamond-like carbon films is discussed. The method uses surface sensitive SEM/EDX to provide substrate-specific, semi-quantitative silicon nitride/DLC stack composition of protective films extensively used in the hard disk drives industry and at Angstrom-level. SEM/EDX output is correlated to TEM to provide direct, gauge-capable film thickness information using multiple regression models that make predictions based on film constituents. The best model uses the N/Si ratio in the films, instead of separate Si and N contributions. Topography of substrate/film after undergoing wear is correlatively and compositionally described based on chemical changes detected via the SEM/EDX method without the need for tedious cross-sectional workflows. Wear track regions of the substrate have a film depleted of carbon, as well as Si and N in the most severe cases, also revealing iron oxide formation. Analysis of film composition variations around industry-level thicknesses reveals a complex interplay between oxygen, silicon and nitrogen, which has been reflected mathematically in the regression models, as well as used to provide valuable insights into the as-deposited physics of the film.


2015 ◽  
Vol 51 (43) ◽  
pp. 8966-8969 ◽  
Author(s):  
Jinsong Feng ◽  
César de la Fuente-Núñez ◽  
Michael J. Trimble ◽  
Jie Xu ◽  
Robert E. W. Hancock ◽  
...  

Pseudomonas aeruginosabiofilm was cultivated and characterized in a microfluidic “lab-on-a-chip” platform coupled with confocal Raman microscopy in a non-destructive manner.


1988 ◽  
Vol 135 (4) ◽  
pp. 885-892 ◽  
Author(s):  
Johann Desilvestro ◽  
Dennis A. Corrigan ◽  
Michael J. Weaver

2010 ◽  
Vol 256 (21) ◽  
pp. 6403-6407 ◽  
Author(s):  
Hua Pang ◽  
Xingquan Wang ◽  
Guling Zhang ◽  
Huan Chen ◽  
Guohua Lv ◽  
...  

Nano Letters ◽  
2012 ◽  
Vol 12 (8) ◽  
pp. 4110-4116 ◽  
Author(s):  
P. T. Araujo ◽  
N. M. Barbosa Neto ◽  
H. Chacham ◽  
S. S. Carara ◽  
J. S. Soares ◽  
...  

2008 ◽  
Vol 17 (12) ◽  
pp. 2071-2074 ◽  
Author(s):  
Veli-Matti Tiainen ◽  
Antti Soininen ◽  
Esa Alakoski ◽  
Yrjö T. Konttinen

Sign in / Sign up

Export Citation Format

Share Document