inert atmosphere
Recently Published Documents


TOTAL DOCUMENTS

952
(FIVE YEARS 300)

H-INDEX

40
(FIVE YEARS 11)

Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 593
Author(s):  
Fiseha Tesfaye ◽  
Daniel Lindberg ◽  
Dmitry Sukhomlinov ◽  
Pekka Taskinen ◽  
Leena Hupa

Thermal stabilities of selected ternary phases of industrial interest in the Ag-Cu-S system have been studied by the calorimetric and electromotive force techniques. The ternary compounds Ag1.2Cu0.8S (mineral mackinstryite) and AgCuS (mineral stromeyerite) were equilibrated through high-temperature reaction of the pure Cu2S and Ag2S in an inert atmosphere. The synthesized single solid sample constituting the two ternary phases was ground into fine powders and lightly pressed into pellets before calorimetric measurements. An electrochemical cell incorporating the two equilibrated phase and additional CuS as a cathode material was employed. The measurement results obtained with both techniques were analyzed and thermodynamic properties in the system have been determined and compared with the available literature values. Enthalpy of fusion data of the Ag-richer solid solution (Ag,Cu)2S have also been determined directly from the experimental data for the first time. The thermodynamic quantities determined in this work can be used to calculate thermal energy of processes involving the Ag-Cu-S-ternary phases. By applying the obtained results and the critically evaluated literature data, we have developed a thermodynamic database. The self-developed database was combined with the latest pure substances database of the FactSage software package to model the phase diagram of the Ag2S-Cu2S system.


Author(s):  
Mohammed Gouda ◽  
Salah Salman ◽  
Saad Ebied

Abstract β-titanium alloys are essential in many applications, particularly biomedical applications. Ti-14Mn β-type alloy was produced using an electric arc furnace from raw alloying elements in an inert atmosphere. The alloy was homogenized at 1000 °C for 8 hr to ensure the complete composition distribution, followed by solution treatment at 900 °C, then quenched in ice water. The alloy was subjected to cold deformation via cold rolling with different ratios: 10, 30, and 90%. The phases change, microstructure, mechanical properties, and corrosion resistance of Ti-14Mn alloys were evaluated before and after cold rolling. The results showed that the β-phase is the only existed phase even after a high degree of deformation. The microstructure shows a combination of twinning and slipping deformation mechanisms in the deformed alloy. Microhardness values indicated a linear increase equal to 30% by increasing the ratio of cold deformation due to the strain hardening effect. The corrosion resistance of Ti-14Mn alloy was doubled after 90% cold rolling.


2022 ◽  
Author(s):  
Stephen Ellis Cox ◽  
Hayden Bryce Dutcher Miller ◽  
Florian Hofmann ◽  
Kenneth Anthony Farley

Abstract. A pervasive challenge in noble gas geochemistry is to ensure that analytical techniques do not modify the composition of the noble gases in the samples. Noble gases are present in the atmosphere and are used in a number of manufacturing procedures and by laboratory equipment. Of particular concern is the introduction of atmospheric or laboratory noble gases to samples during preparation before samples are placed in a vacuum chamber for analysis. Recent work has shown the potential for contamination of crushed samples with air-derived He that is not released by placing the samples under vacuum at low temperature. Using pure He gas as a tracer, we show that the act of crushing samples to a fine powder itself can introduce He contamination, but that this is easily avoided by crushing under liquid or in an inert atmosphere. Because the He is trapped during crushing, the same concern does not extend to samples that are naturally fine-grained when collected. The degree of He contamination even from crushing samples to sizes smaller than typically used for geochronology is insignificant for samples at least 1 Ma and with more than 1 ppm U when the guidelines outlined here are followed.


2022 ◽  
Vol 5 (1) ◽  
Author(s):  
Julian F. Baumgärtner ◽  
Frank Krumeich ◽  
Michael Wörle ◽  
Kostiantyn V. Kravchyk ◽  
Maksym V. Kovalenko

AbstractTowards enhancement of the energy density of Li-ion batteries, BiF3 has recently attracted considerable attention as a compelling conversion-type cathode material due to its high theoretical capacity of 302 mAh g−1, average discharge voltage of ca. 3.0 V vs. Li+/Li, the low theoretical volume change of ca. 1.7% upon lithiation, and an intrinsically high oxidative stability. Here we report a facile and scalable synthesis of phase-pure and highly crystalline orthorhombic BiF3via thermal decomposition of bismuth(III) trifluoroacetate at T = 300 °C under inert atmosphere. The electrochemical measurements of BiF3 in both carbonate (LiPF6-EC/DMC)- and ionic liquid-based (LiFSI-Pyr1,4TFSI) Li-ion electrolytes demonstrated that ionic liquids improve the cyclic stability of BiF3. In particular, BiF3 in 4.3 M LiFSI-Pyr1,4TFSI shows a high initial capacity of 208 mA g−1 and capacity retention of ca. 50% over at least 80 cycles at a current density of 30 mA g−1.


Author(s):  
П.С. Парфенов ◽  
Н.В. Бухряков ◽  
Д.А. Онищук ◽  
А.А. Бабаев ◽  
А.В. Соколова ◽  
...  

The field-effect transistor method is used to study the mobility of charge carriers in layers of lead sulfide nanocrystals with ligands of tetrabutylammonium iodide and 1,2-ethanedithiol used to create solar cells. The difference between the operating of a transistor in ambient air and in an inert atmosphere is demonstrated. It is shown that, in the ambient air, the processes of charging nanocrystals are activated when current flows, and the influence of the polarization of the interface of nanocrystals and the insulator on the measurement of the mobility is analyzed. Different reactions of the layers with ligands to light have been demonstrated, showing a significant oxidation of the surface of nanocrystals treated with 1,2-ethanedithiol.


Catalysts ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 46
Author(s):  
Paula Muñoz-Flores ◽  
Po S. Poon ◽  
Catherine Sepulveda ◽  
Conchi O. Ania ◽  
Juan Matos

Carbon-doped nanostructured CuMo-based photocatalysts were prepared by solvothermal synthesis. Two thermal treatments—oxidative and inert atmosphere—were used for the synthesis of the catalysts, and the influence of spherical carbon structures upon the crystalline phases on the photocatalytic activity and stability was studied. XRD showed the catalysts are nanostructured and composed by a mixture of copper (Cu, Cu2O, and CuO) and molybdenum (MoO2 and MoO3) crystalline phases. The catalysts were used for the degradation of yellow 5 under solar light. A remarkable leaching of Mo both in dark and under solar irradiation was observed and quantified. This phenomenon was responsible for the loss of photocatalytic activity for the degradation of the dye on the Mo-containing series. Conversely, the Cu-based photocatalysts were stable, with no leaching observed after 6 h irradiation and with a higher conversion of yellow 5 compared with the Mo- and CuMo series. The stability of Cu-based catalysts was attributed to a protective effect of spherical carbon structures formed during the solvothermal synthesis. Regarding the catalysts’ composition, sample Cu4-800-N2 prepared by pyrolysis exhibited up to 4.4 times higher photoactivity than that of the pristine material, which is attributed to a combined effect of an enhanced surface area and micropore volume generated during the pyrolytic treatment due to the presence of the carbon component in the catalyst. Scavenger tests have revealed that the mechanism for tartrazine degradation on irradiated Cu-based catalysts involves successive attacks of •OH radicals.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Natalie Eichstaedt ◽  
Kasper P. van der Zwan ◽  
Lina Mayr ◽  
Renée Siegel ◽  
Jürgen Senker ◽  
...  

Abstract Potassium 15-crown-5 phenanthrenide and potassium 18-crown-6 phenanthrenide were synthesized and characterized by powder X-ray diffraction and 39K solid state NMR spectroscopy. While the radical carbanion is very reactive in solution, the crystals are stable and storable under inert atmosphere. For 15-crown-5, a sandwich-like complex of potassium is formed with two molecules of crown ether per potassium resulting in a coordination number of 10. For the larger 18-crown-6 ligand, a 1:1 complex is obtained and a coordination number of 6 for the potassium cation. In neither crystal structure solvent molecules are incorporated. The 15-crown-5 compound crystallizes faster and is less soluble in THF as compared to the 18-crown-6 compound. Both compounds form solid phenanthrenide that is easy to handle and can be applied for reduction reactions.


Molecules ◽  
2021 ◽  
Vol 27 (1) ◽  
pp. 131
Author(s):  
Facun Jiao ◽  
Xulong Ma ◽  
Tao Liu ◽  
Chengli Wu ◽  
Hanxu Li ◽  
...  

The vaporization behaviors of eight heavy metals (Pb, Zn, Cu, Cd, Cr, Co, Mn, and Ni) in municipal solid wastes incineration (MSWI) fly ash during thermal treatment under air atmosphere (21% O2/79% N2), an inert atmosphere (100% N2), and a reducing atmosphere (50% CO/50% N2) were evaluated based on a thermodynamic equilibrium calculation by FactSage 8.1. The results show that the reducing atmosphere promotes the melting of MSWI fly ash, resulting in a more liquid phase than in air or an inert atmosphere. Except for Cd, the formation of liquids can dissolve heavy metals and reduce their vaporization ratio. In the air and inert atmospheres, Pb, Zn, Cu, Co, Mn, and Ni vaporize mainly in the form of metallic chlorides, while Cd volatilizes in the form of metallic Cd (g) and CdO (g). In the reducing atmosphere, Co, Mn, and Ni still vaporize as chlorides. Zn and Cd mainly vaporize in the form of Zn (g) and Cd (g), respectively. In terms of Pb, in addition to its chlorides, the volatiles of Pb contain some Pb (g) and PbS (g). Cr has a low vaporization ratio, accounting for 2.4% of the air atmosphere. Cr, on the other hand, readily reacts with Ca to form water-soluble CrCaO4, potentially increasing Cr leaching. Except for Cd, the results of this study suggest that the reducing atmosphere is used for the thermal treatment of MSWI fly ash because it promotes the melting of fly ash and thus prevents heavy metal vaporization.


2021 ◽  
Author(s):  
Pritam Mahawar ◽  
Pratima Shukla ◽  
Prakash Chandra Joshi ◽  
Dharmendra Singh ◽  
Nagendran Selvarajan

Germacarbonyl compounds are the germanium analogs of carbonyl compounds, and they require an inert atmosphere for stability. Making these compounds survive the ambient conditions was not feasible given the lability of the Ge=E bonds (E = O, S, Se, Te). However, the first examples of germacarbonyl compounds synthesized under ambient conditions by taking advantage of dipyrromethene ligand stabilization are detailed here; the isolated compounds are germanones 3-4, germacarboxylic acids 6-7, germaesters 9-10, and germaamides 12-13 with Ge=E bonds (E = S, Se). The germaamides 12-13 can react under atmospheric conditions with copper(I) halides offering air and water stable monomeric 14-15 and dimeric 16-19 copper(I) complexes (halide = Cl, Br, I). Apart from just binding, selectivity was also observed; thiogermaamide 12 and selenogermaamide 13 bind CuCl and CuBr, respectively, when treated with a mixture of copper(I) halides.


Polymers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 59
Author(s):  
Alexey V. Shapagin ◽  
Natalia A. Gladkikh ◽  
Arkadiy A. Poteryaev ◽  
Valentina Yu. Stepanenko ◽  
Uliana V. Nikulova ◽  
...  

The development of universal finishing compositions for fibers of various natures is an urgent task for polymer composite materials science. The developed finishes can be used for the fiber reinforcement of polymer matrices with a wide range of surface free energy characteristics. Epoxy systems modified with diaminesilane in a wide concentration range were examined by optical interferometry, FTIR spectroscopy, DSC and the sessile drop technique. It was shown that the partial curing of epoxy resin by diaminesilane at room temperature under an inert atmosphere, followed by contact with air, leads to a significant increase of the surface free energy of the system. Varying the concentration of diaminesilane allows us to effectively regulate the surface free energy of the composition. This makes it possible to use fibers finished with epoxyaminosilane compositions in composite materials based on a various thermosetting and thermoplastic binders with a surface tension of up to 75 mJ/m2.


Sign in / Sign up

Export Citation Format

Share Document